340 research outputs found
Packing defects and the width of biopolymer bundles
The formation of bundles composed of actin filaments and cross-linking
proteins is an essential process in the maintenance of the cells' cytoskeleton.
It has also been recreated by in-vitro experiments, where actin networks are
routinely produced to mimic and study the cellular structures. It has long been
observed that these bundles seem to have a well defined width distribution,
which has not been adequately described theoretically. We propose here that
packing defects of the filaments, quenched and random, contribute an effective
repulsion that counters the cross-linking adhesion energy and leads to a well
defined bundle width. This is a two-dimensional strain-field version of the
classic Rayleigh instability of charged droplets
Bcc He as a Coherent Quantum Solid
In this work we investigate implications of the quantum nature of bcc %
He. We show that it is a unique solid phase with both a lattice structure and
an Off-Diagonal Long Range Order of coherently oscillating local electric
dipole moments. These dipoles arise from the local motion of the atoms in the
crystal potential well, and oscillate in synchrony to reduce the dipolar
interaction energy. The dipolar ground-state is therefore found to be a
coherent state with a well defined global phase and a three-component complex
order parameter. The condensation energy of the dipoles in the bcc phase
stabilizes it over the hcp phase at finite temperatures. We further show that
there can be fermionic excitations of this ground-state and predict that they
form an optical-like branch in the (110) direction. A comparison with
'super-solid' models is also discussed.Comment: 12 pages, 8 figure
Evaporative Cooling of a Guided Rubidium Atomic Beam
We report on our recent progress in the manipulation and cooling of a
magnetically guided, high flux beam of atoms. Typically
atoms per second propagate in a magnetic guide providing a
transverse gradient of 800 G/cm, with a temperature K, at an
initial velocity of 90 cm/s. The atoms are subsequently slowed down to cm/s using an upward slope. The relatively high collision rate (5 s)
allows us to start forced evaporative cooling of the beam, leading to a
reduction of the beam temperature by a factor of ~4, and a ten-fold increase of
the on-axis phase-space density.Comment: 10 pages, 8 figure
Force balance and membrane shedding at the Red Blood Cell surface
During the aging of the red-blood cell, or under conditions of extreme
echinocytosis, membrane is shed from the cell plasma membrane in the form of
nano-vesicles. We propose that this process is the result of the
self-adaptation of the membrane surface area to the elastic stress imposed by
the spectrin cytoskeleton, via the local buckling of membrane under increasing
cytoskeleton stiffness. This model introduces the concept of force balance as a
regulatory process at the cell membrane, and quantitatively reproduces the rate
of area loss in aging red-blood cells.Comment: 4 pages, 3 figure
Ferromagnetism of He Films in the Low Field Limit
We provide evidence for a finite temperature ferromagnetic transition in
2-dimensions as in thin films of He on graphite, a model system
for the study of two-dimensional magnetism. We perform pulsed and CW NMR
experiments at fields of 0.03 - 0.48 mT on He at areal densities of 20.5 -
24.2 atoms/nm. At these densities, the second layer of He has a
strongly ferromagnetic tendency. With decreasing temperature, we find a rapid
onset of magnetization that becomes independent of the applied field at
temperatures in the vicinity of 1 mK. Both the dipolar field and the NMR
linewidth grow rapidly as well, which is consistent with a large (order unity)
polarization of the He spins.Comment: 4 figure
Propagating Cell-Membrane Waves Driven by Curved Activators of Actin Polymerization
Cells exhibit propagating membrane waves which involve the actin cytoskeleton. One type of such membranal waves are Circular Dorsal Ruffles (CDR) which are related to endocytosis and receptor internalization. Experimentally, CDRs have been associated with membrane bound activators of actin polymerization of concave shape. We present experimental evidence for the localization of convex membrane proteins in these structures, and their insensitivity to inhibition of myosin II contractility in immortalized mouse embryo fibroblasts cell cultures. These observations lead us to propose a theoretical model which explains the formation of these waves due to the interplay between complexes that contain activators of actin polymerization and membrane-bound curved proteins of both types of curvature (concave and convex). Our model predicts that the activity of both types of curved proteins is essential for sustaining propagating waves, which are abolished when one type of curved activator is removed. Within this model waves are initiated when the level of actin polymerization induced by the curved activators is higher than some threshold value, which allows the cell to control CDR formation. We demonstrate that the model can explain many features of CDRs, and give several testable predictions. This work demonstrates the importance of curved membrane proteins in organizing the actin cytoskeleton and cell shape
Improvements to Response-Surface Based Vehicle Design Using a Feature-Centric Approach
Abstract. In this paper, we present our vision for a framework to facilitate computationally-based aerospace vehicle design by improving the quality of the response surfaces that can be developed for a given cost. The response surfaces are developed using computational fluid dynamics (CFD) techniques of varying fidelity. We propose to improve the quality of a given response surface by exploiting the relationships between the response surface and the flow features that evolve in response to changes in the design parameters. The underlying technology, generalized feature mining, is employed to locate and characterize features as well as provide explanations for feature-feature and feature-vehicle interactions. We briefly describe the components of our framework and outline two different strategies to improve the quality of a response surface. We also highlight ongoing efforts
Optimizing the Design of Spacecraft Systems Using Risk as Currency
Abstract-Treating risk as a "currency" has proven to be key in systematically optimizing the design of spacecraft systems. This idea has been applied in the design of individual components of spacecraft systems, and in the end-to-end design of such systems. The process, called "Defect Detection and Prevention" (DDP), its tool support, and applications, are described in We are now extending this process to include consideration of architectural alternatives, qualification of components, fabrication and assembly, integration and test, and mission operation. The results of applying this extended process in the pre-formulation, formulation and implementation phases of various NASA and other government agency missions will be discussed. This paper will also discuss the results of developing optimized technology development and qualification plans
Atomic micromotion and geometric forces in a triaxial magnetic trap
Non-adiabatic motion of Bose-Einstein condensates of rubidium atoms arising
from the dynamical nature of a time-orbiting-potential (TOP) trap was observed
experimentally. The orbital micromotion of the condensate in velocity space at
the frequency of the rotating bias field of the TOP was detected by a
time-of-flight method. A dependence of the equilibrium position of the atoms on
the sense of rotation of the bias field was observed. We have compared our
experimental findings with numerical simulations. The nonadiabatic following of
the atomic spin in the trap rotating magnetic field produces geometric forces
acting on the trapped atoms.Comment: 4 pages, 4 figure
Fluctuations in active membranes
Active contributions to fluctuations are a direct consequence of metabolic
energy consumption in living cells. Such metabolic processes continuously
create active forces, which deform the membrane to control motility,
proliferation as well as homeostasis. Membrane fluctuations contain therefore
valuable information on the nature of active forces, but classical analysis of
membrane fluctuations has been primarily centered on purely thermal driving.
This chapter provides an overview of relevant experimental and theoretical
approaches to measure, analyze and model active membrane fluctuations. In the
focus of the discussion remains the intrinsic problem that the sole fluctuation
analysis may not be sufficient to separate active from thermal contributions,
since the presence of activity may modify membrane mechanical properties
themselves. By combining independent measurements of spontaneous fluctuations
and mechanical response, it is possible to directly quantify time and
energy-scales of the active contributions, allowing for a refinement of current
theoretical descriptions of active membranes.Comment: 38 pages, 9 figures, book chapte
- …