1,383 research outputs found
Grain boundary melting in ice
We describe an optical scattering study of grain boundary premelting in water
ice. Ubiquitous long ranged attractive polarization forces act to suppress
grain boundary melting whereas repulsive forces originating in screened Coulomb
interactions and classical colligative effects enhance it. The liquid enhancing
effects can be manipulated by adding dopant ions to the system. For all
measured grain boundaries this leads to increasing premelted film thickness
with increasing electrolyte concentration. Although we understand that the
interfacial surface charge densities and solute concentrations can
potentially dominate the film thickness, we can not directly measure them
within a given grain boundary. Therefore, as a framework for interpreting the
data we consider two appropriate dependent limits; one is dominated by
the colligative effect and one is dominated by electrostatic interactions.Comment: 6 pages, 5 figure
Message passing for vertex covers
Constructing a minimal vertex cover of a graph can be seen as a prototype for
a combinatorial optimization problem under hard constraints. In this paper, we
develop and analyze message passing techniques, namely warning and survey
propagation, which serve as efficient heuristic algorithms for solving these
computational hard problems. We show also, how previously obtained results on
the typical-case behavior of vertex covers of random graphs can be recovered
starting from the message passing equations, and how they can be extended.Comment: 25 pages, 9 figures - version accepted for publication in PR
A hard-sphere model on generalized Bethe lattices: Statics
We analyze the phase diagram of a model of hard spheres of chemical radius
one, which is defined over a generalized Bethe lattice containing short loops.
We find a liquid, two different crystalline, a glassy and an unusual
crystalline glassy phase. Special attention is also paid to the close-packing
limit in the glassy phase. All analytical results are cross-checked by
numerical Monte-Carlo simulations.Comment: 24 pages, revised versio
A sociocultural analysis of the development of pre-service and beginning teachers’ pedagogical identities as users of technology
This paper reports on a study that investigated the pedagogical practices and beliefs of pre-service and beginning teachers in integrating technology into the teaching of secondary school mathematics. A case study documents how one teachers modes of working with technology changed over time and across different school contexts, and identifies relationships between a range of personal and contextual factors that influenced the development of his identity as a teacher. This analysis views teachers learning as increasing participation in sociocultural practices, and uses Valsiners concepts of the Zone of Proximal Development, Zone of Free Movement, and Zone of Promoted Action to offer a dynamic way of theorising teacher learning as identity formation
Zidovudine in persons with asympomatic HIV infection and CD4+ cell counts greater than 400 per cubic millimeter
Local Anisotropy of Fluids using Minkowski Tensors
Statistics of the free volume available to individual particles have
previously been studied for simple and complex fluids, granular matter,
amorphous solids, and structural glasses. Minkowski tensors provide a set of
shape measures that are based on strong mathematical theorems and easily
computed for polygonal and polyhedral bodies such as free volume cells (Voronoi
cells). They characterize the local structure beyond the two-point correlation
function and are suitable to define indices of
local anisotropy. Here, we analyze the statistics of Minkowski tensors for
configurations of simple liquid models, including the ideal gas (Poisson point
process), the hard disks and hard spheres ensemble, and the Lennard-Jones
fluid. We show that Minkowski tensors provide a robust characterization of
local anisotropy, which ranges from for vapor
phases to for ordered solids. We find that for fluids,
local anisotropy decreases monotonously with increasing free volume and
randomness of particle positions. Furthermore, the local anisotropy indices
are sensitive to structural transitions in these simple
fluids, as has been previously shown in granular systems for the transition
from loose to jammed bead packs
Real-Gas Effects and Phase Separation in Underexpanded Jets at Engine-Relevant Conditions
A numerical framework implemented in the open-source tool OpenFOAM is
presented in this work combining a hybrid, pressure-based solver with a
vapor-liquid equilibrium model based on the cubic equation of state. This
framework is used in the present work to investigate underexpanded jets at
engine-relevant conditions where real-gas effects and mixture induced phase
separation are probable to occur. A thorough validation and discussion of the
applied vapor-liquid equilibrium model is conducted by means of general
thermodynamic relations and measurement data available in the literature.
Engine-relevant simulation cases for two different fuels were defined. Analyses
of the flow field show that the used fuel has a first order effect on the
occurrence of phase separation. In the case of phase separation two different
effects could be revealed causing the single-phase instability, namely the
strong expansion and the mixing of the fuel with the chamber gas. A comparison
of single-phase and two-phase jets disclosed that the phase separation leads to
a completely different penetration depth in contrast to single-phase injection
and therefore commonly used analytical approaches fail to predict the
penetration depth.Comment: Preprint submitted to AIAA Scitech 2018, Kissimmee, Florid
Fresnel filtering in lasing emission from scarred modes of wave-chaotic optical resonators
We study lasing emission from asymmetric resonant cavity (ARC) GaN
micro-lasers. By comparing far-field intensity patterns with images of the
micro-laser we find that the lasing modes are concentrated on three-bounce
unstable periodic ray orbits, i.e. the modes are scarred. The high-intensity
emission directions of these scarred modes are completely different from those
predicted by applying Snell's law to the ray orbit. This effect is due to the
process of ``Fresnel filtering'' which occurs when a beam of finite angular
spread is incident at the critical angle for total internal reflection.Comment: 4 pages, 3 figures (eps), RevTeX 3.1, submitted to Phys. Rev. Lett;
corrected a minor (transcription) erro
Minkowski Tensors of Anisotropic Spatial Structure
This article describes the theoretical foundation of and explicit algorithms
for a novel approach to morphology and anisotropy analysis of complex spatial
structure using tensor-valued Minkowski functionals, the so-called Minkowski
tensors. Minkowski tensors are generalisations of the well-known scalar
Minkowski functionals and are explicitly sensitive to anisotropic aspects of
morphology, relevant for example for elastic moduli or permeability of
microstructured materials. Here we derive explicit linear-time algorithms to
compute these tensorial measures for three-dimensional shapes. These apply to
representations of any object that can be represented by a triangulation of its
bounding surface; their application is illustrated for the polyhedral Voronoi
cellular complexes of jammed sphere configurations, and for triangulations of a
biopolymer fibre network obtained by confocal microscopy. The article further
bridges the substantial notational and conceptual gap between the different but
equivalent approaches to scalar or tensorial Minkowski functionals in
mathematics and in physics, hence making the mathematical measure theoretic
method more readily accessible for future application in the physical sciences
Gyrotropic impact upon negatively refracting surfaces
Surface wave propagation at the interface between different types of gyrotropic materials and an isotropic negatively refracting medium, in which the relative permittivity and relative permeability are, simultaneously, negative is investigated. A general approach is taken that embraces both gyroelectric and gyromagnetic materials, permitting the possibility of operating in either the low GHz, THz or the optical frequency regimes. The classical transverse Voigt configuration is adopted and a complete analysis of non-reciprocal surface wave dispersion is presented. The impact of the surface polariton modes upon the reflection of both plane waves and beams is discussed in terms of resonances and an example of the influence upon the Goos–Hänchen shift is given
- …
