2,686 research outputs found

    A cross sectional study of the prevalence, risk factors and population attributable fractions for limb and body lesions in lactating sows on commercial farms in England

    Get PDF
    Background: Lesions on sows' limbs and bodies are an abnormality that might impact on their welfare. The prevalence of and risks for limb and body lesions on lactating sows on commercial English pig farms were investigated using direct observation of the sows and their housing. Results: The prevalence of lesions on the limbs and body were 93% (260/279) and 20% (57/288) respectively. The prevalence of limb and body lesions was significantly lower in outdoor-housed sows compared with indoor-housed sows. Indoor-housed sows had an increased risk of wounds (OR 6.8), calluses (OR 8.8) and capped hock (OR 3.8) on their limbs when housed on fully slatted floors compared with solid concrete floors. In addition, there was an increased risk of bursitis (OR 2.7), capped hock (OR 2.3) and shoulder lesions (OR 4.8) in sows that were unwilling to rise to their feet. There was a decreased risk of shoulder lesions (OR 0.3) and lesions elsewhere on the body (OR 0.2) in sows with more than 20 cm between their tail and the back of the crate compared with sows with less than 10 cm. Conclusion: The sample of outdoor housed sows in this study had the lowest prevalence of limb and body lesions. In lactating sows housed indoors there was a general trend for an increased risk of limb and body lesions in sows housed on slatted floors compared with those housed on solid concrete floors with bedding. Sows that were less responsive to human presence and sows that had the least space to move within their crates had an additional increased risk of lesions

    Indecomposable modules and Gelfand rings

    Full text link
    It is proved that a commutative ring is clean if and only if it is Gelfand with a totally disconnected maximal spectrum. Commutative rings for which each indecomposable module has a local endomorphism ring are studied. These rings are clean and elementary divisor rings

    Role of the fast kinetics of pyroglutamate-modified amyloid-β oligomers in membrane binding and membrane permeability.

    Get PDF
    Membrane permeability to ions and small molecules is believed to be a critical step in the pathology of Alzheimer's disease (AD). Interactions of oligomers formed by amyloid-β (Aβ) peptides with the plasma cell membrane are believed to play a fundamental role in the processes leading to membrane permeability. Among the family of Aβs, pyroglutamate (pE)-modified Aβ peptides constitute the most abundant oligomeric species in the brains of AD patients. Although membrane permeability mechanisms have been studied for full-length Aβ1-40/42 peptides, these have not been sufficiently characterized for the more abundant AβpE3-42 fragment. Here we have compared the adsorbed and membrane-inserted oligomeric species of AβpE3-42 and Aβ1-42 peptides. We find lower concentrations and larger dimensions for both species of membrane-associated AβpE3-42 oligomers. The larger dimensions are attributed to the faster self-assembly kinetics of AβpE3-42, and the lower concentrations are attributed to weaker interactions with zwitterionic lipid headgroups. While adsorbed oligomers produced little or no significant membrane structural damage, increased membrane permeabilization to ionic species is understood in terms of enlarged membrane-inserted oligomers. Membrane-inserted AβpE3-42 oligomers were also found to modify the mechanical properties of the membrane. Taken together, our results suggest that membrane-inserted oligomers are the primary species responsible for membrane permeability

    Rings of Quotients of Rings of Functions

    Full text link
    From the original PREFACE: The rings of quotients recently introduced by Johnson and Utumi are applied to the ring C(X)C(X) of all continuous real-valued functions on a completely regular space XX. Let Q(X)Q(X) denote the maximal ring of quotients of C(X)C(X); then Q(X)Q(X) may be realized as the ring of all continuous functions on the dense open sets of XX (modulo an obvious equivalence relation). In special cases (e.g., for metric XX), Q(X)Q(X) reduces to the classical ring of quotients of C(X)C(X) (formed with respect to the regular elements), but in general, the classical ring is only a proper sub-ring of Q(X)Q(X).Comment: 72 pages, Typeset copy of 1966 original, long out of prin

    Quantitating Iron in Serum Ferritin by Use of ICP-MS

    Get PDF
    A laboratory method has been devised to enable measurement of the concentration of iron bound in ferritin from small samples of blood (serum). Derived partly from a prior method that depends on large samples of blood, this method involves the use of an inductively-coupled-plasma mass spectrometer (ICP-MS). Ferritin is a complex of iron with the protein apoferritin. Heretofore, measurements of the concentration of serum ferritin (as distinguished from direct measurements of the concentration of iron in serum ferritin) have been used to assess iron stores in humans. Low levels of serum ferritin could indicate the first stage of iron depletion. High levels of serum ferritin could indicate high levels of iron (for example, in connection with hereditary hemochromatosis an iron-overload illness that is characterized by progressive organ damage and can be fatal). However, the picture is complicated: A high level of serum ferritin could also indicate stress and/or inflammation instead of (or in addition to) iron overload, and low serum iron concentration could indicate inflammation rather than iron deficiency. Only when concentrations of both serum iron and serum ferritin increase and decrease together can the patient s iron status be assessed accurately. Hence, in enabling accurate measurement of the iron content of serum ferritin, the present method can improve the diagnosis of the patient s iron status. The prior method of measuring the concentration of iron involves the use of an atomic-absorption spectrophotometer with a graphite furnace. The present method incorporates a modified version of the sample- preparation process of the prior method. First, ferritin is isolated; more specifically, it is immobilized by immunoprecipitation with rabbit antihuman polyclonal antibody bound to agarose beads. The ferritin is then separated from other iron-containing proteins and free iron by a series of centrifugation and wash steps. Next, the ferritin is digested with nitric acid to extract its iron content. Finally, a micronebulizer is used to inject the sample of the product of the digestion into the ICPMS for analysis of its iron content. The sensitivity of the ICP-MS is high enough to enable it to characterize samples smaller than those required in the prior method (samples can be 0.15 to 0.60 mL)

    Artifacts with uneven sampling of red noise

    Get PDF
    The vast majority of sampling systems operate in a standard way: at each tick of a fixed-frequency master clock a digitizer reads out a voltage that corresponds to the value of some physical quantity and translates it into a bit pattern that is either transmitted, stored, or processed right away. Thus signal sampling at evenly spaced time intervals is the rule: however this is not always the case, and uneven sampling is sometimes unavoidable. While periodic or quasi-periodic uneven sampling of a deterministic signal can reasonably be expected to produce artifacts, it is much less obvious that the same happens with noise: here I show that this is indeed the case only for long-memory noise processes, i.e., power-law noises 1/fα1/f^\alpha with α>2\alpha > 2. The resulting artifacts are usually a nuisance although they can be eliminated with a proper processing of the signal samples, but they could also be turned to advantage and used to encode information.Comment: 5 figure

    Topological partition relations to the form omega^*-> (Y)^1_2

    Full text link
    Theorem: The topological partition relation omega^{*}-> (Y)^{1}_{2} (a) fails for every space Y with |Y| >= 2^c ; (b) holds for Y discrete if and only if |Y| <= c; (c) holds for certain non-discrete P-spaces Y ; (d) fails for Y= omega cup {p} with p in omega^{*} ; (e) fails for Y infinite and countably compact
    corecore