1,600 research outputs found

    The general structure of quantum resource theories

    Get PDF
    In recent years it was recognized that properties of physical systems such as entanglement, athermality, and asymmetry, can be viewed as resources for important tasks in quantum information, thermodynamics, and other areas of physics. This recognition followed by the development of specific quantum resource theories (QRTs), such as entanglement theory, determining how quantum states that cannot be prepared under certain restrictions may be manipulated and used to circumvent the restrictions. Here we discuss the general structure of QRTs, and show that under a few assumptions (such as convexity of the set of free states), a QRT is asymptotically reversible if its set of allowed operations is maximal; that is, if the allowed operations are the set of all operations that do not generate (asymptotically) a resource. In this case, the asymptotic conversion rate is given in terms of the regularized relative entropy of a resource which is the unique measure/quantifier of the resource in the asymptotic limit of many copies of the state. This measure also equals the smoothed version of the logarithmic robustness of the resource.Comment: 5 pages, no figures, few references added, published versio

    Data driving the top quark forward--backward asymmetry with a lepton-based handle

    Full text link
    We propose that, within the standard model, the correlation between the ttˉt\bar{t} forward--backward asymmetry AttˉA_{t\bar t} and the corresponding lepton-based asymmetry AlA_l -- at the differential level -- is strong and rather clean both theoretically and experimentally. Hence a combined measurement of the two distributions as a function of the lepton pTp_T, a direct and experimentally clean observable, would lead to a potentially unbiased and normalization-free test of the standard model prediction. To check the robustness of our proposal we study how the correlation is affected by mis-measurement of the ttˉt\bar t system transverse momenta, acceptance cuts, scale dependence and compare the results of MCFM, POWHEG (with & without PYTHIA showering), and SHERPA's CSSHOWER in first-emission mode. We find that the shape of the relative differential distribution Al(pTl)[Attˉ(pTl)]A_{l} (p^{l}_{T}) [A_{t\bar{t}} (p^l_T)] is only moderately distorted hence supporting the usefulness of our proposal. Beyond the first emission, we find that the correlation is not accurately captured by lowest-order treatment. We also briefly consider other differential variables such as the system transverse mass and the canonical ttˉt\bar t invariant mass. Finally, we study new physics scenarios where the correlation is significantly distorted and therefore can be more readily constrained or discovered using our method.Comment: 27 pages, 12 figure

    An Exclusive Window onto Higgs Yukawa Couplings

    Full text link
    We show that both flavor-conserving and flavor-violating Yukawa couplings of the Higgs boson to first- and second-generation quarks can be probed by measuring rare decays of the form h->MV, where M denotes a vector meson and V indicates either gamma, W or Z. We calculate the branching ratios for these processes in both the Standard Model and its possible extensions. We discuss the experimental prospects for their observation. The possibility of accessing these Higgs couplings appears to be unique to the high-luminosity LHC and future hadron colliders, providing further motivation for those machines.Comment: 6 pages, 2 figures, 1 tabl

    Time-reversal frameness and superselection

    Full text link
    We show that appropriate superpositions of motional states are a reference frame resource that enables breaking of time -reversal superselection so that two parties lacking knowledge about the other's direction of time can still communicate. We identify the time-reversal reference frame resource states and determine the corresponding frameness monotone, which connects time-reversal frameness to entanglement. In contradistinction to other studies of reference frame quantum resources, this is the first analysis that involves an antiunitary rather than unitary representation.Comment: 10 p

    B-factory Signals for a Warped Extra Dimension

    Full text link
    We study predictions for B-physics in a class of models, recently introduced, with a non-supersymmetric warped extra dimension. In these models few (3\sim 3) TeV Kaluza-Klein masses are consistent with electroweak data due to bulk custodial symmetry. Furthermore, there is an analog of GIM mechanism which is violated by the heavy top quark (just as in SM) leading to striking signals at BB-factories:(i) New Physics (NP) contributions to ΔF=2\Delta F= 2 transitions are comparable to SM. This implies that, within this NP framework, the success of SM unitarity triangle fit is a ``coincidence'' Thus, clean extractions of unitarity angles via e.g. Bππ,ρπ,ρρ,DKB \to \pi \pi,\rho \pi, \rho \rho, DK are likely to be affected, in addition to O(1) deviation from SM prediction in BsB_s mixing. (ii) O(1) deviation from SM predictions for BXsl+lB \to X_s l^+ l^- in rate as well as in forward-backward and direct CP asymmetry. (iii) Large mixing-induced CP asymmetry in radiative B decays, wherein the SM unamibgously predicts very small asymmetries. Also with KK masses 3 TeV or less, and with anarchic Yukawa masses, contributions to electric dipole moments of the neutron are roughly 20 times larger than the current experimental bound so that this framework has a "CP problem".Comment: On further consideration, we found that our framework does have a "CP problem" in that though contributions to neutron's electric dipole moment from CKM-like phases vanish at the one-loop level, sizeable contributions are induced by Majorana-like phases. Last sentence of abstract is changed along with para #3 and 4 on page

    Measurement of transparency ratios for protons from short-range correlated pairs

    Full text link
    Nuclear transparency, Tp(A), is a measure of the average probability for a struck proton to escape the nucleus without significant re-interaction. Previously, nuclear transparencies were extructed for quasi-elastic A(e,e'p) knockout of protons with momentum below the Fermi momentum, where the spectral functions are well known. In this paper we extract a novel observable, the transparency ratio, Tp(A)/T_p(12C), for knockout of high-missing-momentum protons from the breakup of short range correlated pairs (2N-SRC) in Al, Fe and Pb nuclei relative to C. The ratios were measured at momentum transfer Q^2 > 1.5 (GeV/c)^2 and x_B > 1.2 where the reaction is expected to be dominated by electron scattering from 2N-SRC. The transparency ratios of the knocked-out protons coming from 2N-SRC breakup are 20 - 30% lower than those of previous results for low missing momentum. They agree with Glauber calculations and agree with renormalization of the previously published transparencies as proposed by recent theoretical investigations. The new transparencies scale as A^-1/3, which is consistent with dominance of scattering from nucleons at the nuclear surface.Comment: 6 pages, 4 figure
    corecore