171 research outputs found

    The integration of morphological design and topology optimization to enhance the visual quality of electricity pylons

    Get PDF
    Purpose: This paper aims to enhance the visual quality of artificial above-ground structures, like pylons, masts, and towers of infrastructures and facilities, through a systematic design method for their morphological and structural optimization. Design/methodology/approach: The method achieves the functional and aesthetic goals based on the application of computer-aided tools. In particular, this is achieved according to three key steps: ā€¢ Morphological development of landscape-related symbolism, environment, or culture and social needs. ā€¢ Topology optimization of the design concept to reduce the structural weight and its visual impact. ā€¢ Engineering of the resulting optimized structure. Practical implications: As a case study, the method is used for designing electricity pylons for the coastal territory of a Mediterranean European country, such as Italy. Citizens were involved during the identification phase of a symbolic shape for the concept development and during the final assessment phase. Research limitations/implications: The engineering phase has been performed by assembling standard lattice components with welded connections. Even if the use of this truss-like structure should lead to a minimum cost, the developed structure employs an additional 15%ā€“20% of trusses and sheet metal covers the final cost is higher than a standard lattice pylon. Findings: The result is a structure with enhanced visual quality according to the international guidelines and fully complying with mandatory and functional requirements, such as regulatory and industrial feasibility, as well as those arising from social components. Originality/value: The method shows its potential in defining a custom design for lightweight structures with enhanced visual quality regarding the critical situation discussed here. The method considers both the subjective perception of citizens and their priorities and the landscape where the structures will be installed

    Energy fluctuation relations and repeated quantum measurements

    Get PDF
    In this paper, we discuss the statistical description in non-equilibrium regimes of energy fluctuations originated by the interaction between a quantum system and a measurement apparatus applying a sequence of repeated quantum measurements. To properly quantify the information about energy fluctuations, both the exchanged heat probability density function and the corresponding characteristic function are derived and interpreted. Then, we discuss the conditions allowing for the validity of the fluctuation theorem in Jarzynski form 怈eāˆ’Ī²Q怉=1, thus showing that the fluctuation relation is robust against the presence of randomness in the time intervals between measurements. Moreover, also the late-time, asymptotic properties of the heat characteristic function are analyzed, in the thermodynamic limit of many intermediate quantum measurements. In such a limit, the quantum system tends to the maximally mixed state (thus corresponding to a thermal state with infinite temperature) unless the system's Hamiltonian and the intermediate measurement observable share a common invariant subspace. Then, in this context, we also discuss how energy fluctuation relations change when the system operates in the quantum Zeno regime. Finally, the theoretical results are illustrated for the special cases of two- and three-levels quantum systems, now ubiquitous for quantum applications and technologies

    Phosfinder: a web server for the identification of phosphate-binding sites on protein structures

    Get PDF
    Phosfinder is a web server for the identification of phosphate binding sites in protein structures. Phosfinder uses a structural comparison algorithm to scan a query structure against a set of known 3D phosphate binding motifs. Whenever a structural similarity between the query protein and a phosphate binding motif is detected, the phosphate bound by the known motif is added to the protein structure thus representing a putative phosphate binding site. Predicted binding sites are then evaluated according to (i) their position with respect to the query protein solvent-excluded surface and (ii) the conservation of the binding residues in the protein family. The server accepts as input either the PDB code of the protein to be analyzed or a user-submitted structure in PDB format. All the search parameters are user modifiable. Phosfinder outputs a list of predicted binding sites with detailed information about their structural similarity with known phosphate binding motifs, and the conservation of the residues involved. A graphical applet allows the user to visualize the predicted binding sites on the query protein structure. The results on a set of 52 apo/holo structure pairs show that the performance of our method is largely unaffected by ligand-induced conformational changes. Phosfinder is available at http://phosfinder.bio.uniroma2.it

    Acetyl-Phosphate Is Not a Global Regulatory Bridge between Virulence and Central Metabolism in Borrelia burgdorferi

    Get PDF
    In B. burgdorferi, the Rrp2-RpoN-RpoS signaling cascade is a distinctive system that coordinates the expression of virulence factors required for successful transition between its arthropod vector and mammalian hosts. Rrp2 (BB0763), an RpoN specific response regulator, is essential to activate this regulatory pathway. Previous investigations have attempted to identify the phosphate donor of Rrp2, including the cognate histidine kinase, Hk2 (BB0764), non-cognate histidine kinases such as Hk1, CheA1, and CheA2, and small molecular weight P-donors such as carbamoyl-phosphate and acetyl-phosphate (AcP). In a report by Xu et al., exogenous sodium acetate led to increased expression of RpoS and OspC and it was hypothesized this effect was due to increased levels of AcP via the enzyme AckA (BB0622). Genome analyses identified only one pathway that could generate AcP in B. burgdorferi: the acetate/mevalonate pathway that synthesizes the lipid, undecaprenyl phosphate (C55-P, lipid I), which is essential for cell wall biogenesis. To assess the role of AcP in Rrp2-dependent regulation of RpoS and OspC, we used a unique selection strategy to generate mutants that lacked ackA (bb0622: acetate to AcP) or pta (bb0589: AcP to acetyl-CoA). These mutants have an absolute requirement for mevalonate and demonstrate that ackA and pta are required for cell viability. When the Ī”ackA or Ī”pta mutant was exposed to conditions (i.e., increased temperature or cell density) that up-regulate the expression of RpoS and OspC, normal induction of those proteins was observed. In addition, adding 20mM acetate or 20mM benzoate to the growth media of B. burgdorferi strain B31 Ī”ackA induced the expression of RpoS and OspC. These data suggest that AcP (generated by AckA) is not directly involved in modulating the Rrp2-RpoN-RpoS regulatory pathway and that exogenous acetate or benzoate are triggering an acid stress response in B. burgdorferi

    Carotid Ultrasound Boundary Study (CUBS): An Open Multicenter Analysis of Computerized Intimaā€“Media Thickness Measurement Systems and Their Clinical Impact

    Get PDF
    Common carotid intimaā€“media thickness (CIMT) is a commonly used marker for atherosclerosis and is often computed in carotid ultrasound images. An analysis of different computerized techniques for CIMT measurement and their clinical impacts on the same patient data set is lacking. Here we compared and assessed five computerized CIMT algorithms against three expert analystsā€™ manual measurements on a data set of 1088 patients from two centers. Inter- and intra-observer variability was assessed, and the computerized CIMT values were compared with those manually obtained. The CIMT measurements were used to assess the correlation with clinical parameters, cardiovascular event prediction through a generalized linear model and the Kaplanā€“Meier hazard ratio. CIMT measurements obtained with a skilled analyst's segmentation and the computerized segmentation were comparable in statistical analyses, suggesting they can be used interchangeably for CIMT quantification and clinical outcome investigation. To facilitate future studies, the entire data set used is made publicly available for the community at http://dx.doi.org/10.17632/fpv535fss7.1

    Discriminative structural approaches for enzyme active-site prediction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Predicting enzyme active-sites in proteins is an important issue not only for protein sciences but also for a variety of practical applications such as drug design. Because enzyme reaction mechanisms are based on the local structures of enzyme active-sites, various template-based methods that compare local structures in proteins have been developed to date. In comparing such local sites, a simple measurement, RMSD, has been used so far.</p> <p>Results</p> <p>This paper introduces new machine learning algorithms that refine the similarity/deviation for comparison of local structures. The similarity/deviation is applied to two types of applications, single template analysis and multiple template analysis. In the single template analysis, a single template is used as a query to search proteins for active sites, whereas a protein structure is examined as a query to discover the possible active-sites using a set of templates in the multiple template analysis.</p> <p>Conclusions</p> <p>This paper experimentally illustrates that the machine learning algorithms effectively improve the similarity/deviation measurements for both the analyses.</p

    CMASA: an accurate algorithm for detecting local protein structural similarity and its application to enzyme catalytic site annotation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rapid development of structural genomics has resulted in many "unknown function" proteins being deposited in Protein Data Bank (PDB), thus, the functional prediction of these proteins has become a challenge for structural bioinformatics. Several sequence-based and structure-based methods have been developed to predict protein function, but these methods need to be improved further, such as, enhancing the accuracy, sensitivity, and the computational speed. Here, an accurate algorithm, the CMASA (Contact MAtrix based local Structural Alignment algorithm), has been developed to predict unknown functions of proteins based on the local protein structural similarity. This algorithm has been evaluated by building a test set including 164 enzyme families, and also been compared to other methods.</p> <p>Results</p> <p>The evaluation of CMASA shows that the CMASA is highly accurate (0.96), sensitive (0.86), and fast enough to be used in the large-scale functional annotation. Comparing to both sequence-based and global structure-based methods, not only the CMASA can find remote homologous proteins, but also can find the active site convergence. Comparing to other local structure comparison-based methods, the CMASA can obtain the better performance than both FFF (a method using geometry to predict protein function) and SPASM (a local structure alignment method); and the CMASA is more sensitive than PINTS and is more accurate than JESS (both are local structure alignment methods). The CMASA was applied to annotate the enzyme catalytic sites of the non-redundant PDB, and at least 166 putative catalytic sites have been suggested, these sites can not be observed by the Catalytic Site Atlas (CSA).</p> <p>Conclusions</p> <p>The CMASA is an accurate algorithm for detecting local protein structural similarity, and it holds several advantages in predicting enzyme active sites. The CMASA can be used in large-scale enzyme active site annotation. The CMASA can be available by the mail-based server (<url>http://159.226.149.45/other1/CMASA/CMASA.htm</url>).</p

    A unified statistical model to support local sequence order independent similarity searching for ligand-binding sites and its application to genome-based drug discovery

    Get PDF
    Functional relationships between proteins that do not share global structure similarity can be established by detecting their ligand-binding-site similarity. For a large-scale comparison, it is critical to accurately and efficiently assess the statistical significance of this similarity. Here, we report an efficient statistical model that supports local sequence order independent ligandā€“binding-site similarity searching. Most existing statistical models only take into account the matching vertices between two sites that are defined by a fixed number of points. In reality, the boundary of the binding site is not known or is dependent on the bound ligand making these approaches limited. To address these shortcomings and to perform binding-site mapping on a genome-wide scale, we developed a sequence-order independent profileā€“profile alignment (SOIPPA) algorithm that is able to detect local similarity between unknown binding sites a priori. The SOIPPA scoring integrates geometric, evolutionary and physical information into a unified framework. However, this imposes a significant challenge in assessing the statistical significance of the similarity because the conventional probability model that is based on fixed-point matching cannot be applied. Here we find that scores for binding-site matching by SOIPPA follow an extreme value distribution (EVD). Benchmark studies show that the EVD model performs at least two-orders faster and is more accurate than the non-parametric statistical method in the previous SOIPPA version. Efficient statistical analysis makes it possible to apply SOIPPA to genome-based drug discovery. Consequently, we have applied the approach to the structural genome of Mycobacterium tuberculosis to construct a proteinā€“ligand interaction network. The network reveals highly connected proteins, which represent suitable targets for promiscuous drugs
    • ā€¦
    corecore