166 research outputs found

    Adaptive Interference Mitigation Using Frequency-Selective Limiters Over GPS Band For Automotive Applications

    Get PDF
    In this work, we address the challenges associated with the necessity to protect Global Positioning system (GPS) receivers from various types of electromagnetic interference (EMI) generated by internal or external sources. We have developed a compact, lightweight, and passive frequency selective limiter (FSL) technology that automatically and adaptively protects vulnerable input circuits of a GPS receiver from unwanted emissions and prevents a GPS receiver from going into saturation. This technology is based on using magnetostatic surface waves in a magnetically biased ferrite film. The nonlinear processes in ferrite films enable discrimination of signals based on their power levels. In these devices, the frequency-selective transmission response adjusts rapidly and automatically, in real time, such that no portion of the output spectrum exceeds a designated power threshold. FSLs are capable of mitigating multiple interfering signals without prior knowledge of the timing or the frequency content of the interferers. A few examples of FSL design and measured characteristics are provided for GPS L1 band

    Der Preisschutz der Markenartikel-Industrie

    Get PDF

    N-acetylcysteine lacks universal inhibitory activity against influenza A viruses

    Get PDF
    N-acetylcysteine (NAC) has been recently proposed as an adjuvant therapeutic drug for influenza pneumonia in humans. This proposal is based on its ability to restrict influenza virus replication in vitro and to attenuate the severity of the disease in mouse models. Although available studies were made with different viruses (human and avian), published information related to the anti-influenza spectrum of NAC is scarce. In this study, we show that NAC is unable to alter the course of a fatal influenza pneumonia caused by inoculation of a murinized swine H1N1 influenza virus. NAC was indeed able to inhibit the swine virus in vitro but far less than reported for other strains. Therefore, susceptibility of influenza viruses to NAC appears to be strain-dependent, suggesting that it cannot be considered as a universal treatment for influenza pneumonia

    Evaluación de calidad de agua en un sistema ribereño utilizado para riego agrícola de subsistencia

    Get PDF
    En la evaluación del impacto de la contaminación en el ambiente, existen diversas herramientas y técnicas que se aplican para conocer la calidad ambiental de los recursos naturales. El objetivo de este trabajo fue evaluar la calidad del agua en un sistema ribereño en San Luis Potosí, México asociado al impacto del uso agrícola, urbano e industrial. Fueron establecidos cinco puntos de muestreo asociado a diversos usos y descargas residuales en donde se evaluaron 28 muestras durante cuatro días de muestro. Estas fueron distribuidas a los 20, 40, 60, 80, 100 y 120 minutos del trayecto determinando con un medidor multiparámetro los sólidos disueltos totales (SDT), temperatura (T), conductividad eléctrica (CE), pH y oxígeno disuelto (OD). El resultado más destacado de las 28 muestras diarias y del total de 112 que los promedios oxígeno disuelto indican condición hipoxia que indica la desaparición de organismos y especies sensibles, concluyendo que el área ribereña requiere un constante monitoreo y diversificación de parámetros para evaluar su condición para actividades agrícolas.In the assessment of the impact of pollution on the environment, there are various tools and techniques that are applied to know the environmental quality of natural resources. The objective of this work was to evaluate water quality in a river system in San Luis Potosí, Mexico associated with the impact of agricultural, urban and industrial use. Five sampling points associated to various uses and residual discharges were established where 28 samples were evaluated during four days of sampling. The total dissolved solids (SDT), temperature (T), electrical conductivity (CE), pH and dissolved oxygen (OD) were distributed at 20, 40, 60, 80, 100 and 120 minutes of the path. The most outstanding result of the 28 daily samples and the total of 112 that dissolved oxygen averages indicate hypoxia condition indicating the disappearance of sensitive organisms and species, concluding that the riparian area requires constant monitoring and diversification of parameters to evaluate agricultural activities.Fil: Alcalá Jáuregui, J. A. Universidad Autónoma de San Luis Potosí. Facultad de AgronomíaFil: Acosta Doporto Geiler, A. Instituto Tecnológico Superior de los Ríos de Balancan (México)Fil: Rodríguez Ortiz, J.C. Universidad Autónoma de San Luis Potosí. Facultad de AgronomíaFil: Hernández Montoya, A. Universidad Autónoma de San Luis Potosí. Facultad de AgronomíaFil: Martínez Carretero, Eduardo. Consejo Nacional de Investigaciones Científicas y TécnicasFil: Filippini, Maria Flavia. Universidad Nacional de Cuyo. Facultad de Ciencias AgrariasFil: Díaz Flores, P. E. Universidad Autónoma de San Luis Potosí. Facultad de AgronomíaFil: Lara Mireles, J. L. Universidad Autónoma de San Luis Potosí. Facultad de Agronomí

    High coercivity cobalt carbide nanoparticles processed via polyol reaction: A new permanent magnet material

    Full text link
    Cobalt carbide nanoparticles were processed using polyol reduction chemistry that offers high product yields in a cost effective single-step process. Particles are shown to be acicular in morphology and typically assembled as clusters with room temperature coercivities greater than 4 kOe and maximum energy products greater than 20 KJ/m3. Consisting of Co3C and Co2C phases, the ratio of phase volume, particle size, and particle morphology all play important roles in determining permanent magnet properties. Further, the acicular particle shape provides an enhancement to the coercivity via dipolar anisotropy energy as well as offering potential for particle alignment in nanocomposite cores. While Curie temperatures are near 510K at temperatures approaching 700 K the carbide powders experience an irreversible dissociation to metallic cobalt and carbon thus limiting operational temperatures to near room temperature.Comment: Total 28 pages, 10 figures, and 1 tabl

    Debris Disks: Probing Planet Formation

    Full text link
    Debris disks are the dust disks found around ~20% of nearby main sequence stars in far-IR surveys. They can be considered as descendants of protoplanetary disks or components of planetary systems, providing valuable information on circumstellar disk evolution and the outcome of planet formation. The debris disk population can be explained by the steady collisional erosion of planetesimal belts; population models constrain where (10-100au) and in what quantity (>1Mearth) planetesimals (>10km in size) typically form in protoplanetary disks. Gas is now seen long into the debris disk phase. Some of this is secondary implying planetesimals have a Solar System comet-like composition, but some systems may retain primordial gas. Ongoing planet formation processes are invoked for some debris disks, such as the continued growth of dwarf planets in an unstirred disk, or the growth of terrestrial planets through giant impacts. Planets imprint structure on debris disks in many ways; images of gaps, clumps, warps, eccentricities and other disk asymmetries, are readily explained by planets at >>5au. Hot dust in the region planets are commonly found (<5au) is seen for a growing number of stars. This dust usually originates in an outer belt (e.g., from exocomets), although an asteroid belt or recent collision is sometimes inferred.Comment: Invited review, accepted for publication in the 'Handbook of Exoplanets', eds. H.J. Deeg and J.A. Belmonte, Springer (2018

    TERT promoter mutation and chromosome 6 loss define a high-risk subtype of ependymoma evolving from posterior fossa subependymoma

    Get PDF
    Subependymomas are benign tumors characteristically encountered in the posterior fossa of adults that show distinct epigenetic profiles assigned to the molecular group "subependymoma, posterior fossa" (PFSE) of the recently established DNA methylation-based classification of central nervous system tumors. In contrast, most posterior fossa ependymomas exhibit a more aggressive biological behavior and are allocated to the molecular subgroups PFA or PFB. A subset of ependymomas shows epigenetic similarities with subependymomas, but the precise biology of these tumors and their potential relationships remain unknown. We therefore set out to characterize epigenetic traits, mutational profiles, and clinical outcomes of 50 posterior fossa ependymal tumors of the PFSE group. On histo-morphology, these tumors comprised 12 ependymomas, 14 subependymomas and 24 tumors with mixed ependymoma-subependymoma morphology. Mixed ependymoma-subependymoma tumors varied in their extent of ependymoma differentiation (2-95%) but consistently exhibited global epigenetic profiles of the PFSE group. Selective methylome analysis of microdissected tumor components revealed CpG signatures in mixed tumors that coalesce with their pure counterparts. Loss of chr6 (20/50 cases), as well as TERT mutations (21/50 cases), were frequent events enriched in tumors with pure ependymoma morphology (p < 0.001) and confined to areas with ependymoma differentiation in mixed tumors. Clinically, pure ependymoma phenotype, chr6 loss, and TERT mutations were associated with shorter progression-free survival (each p < 0.001). In conclusion, our results suggest that subependymomas may acquire genetic and epigenetic changes throughout tumor evolution giving rise to subclones with ependymoma morphology (resulting in mixed tumors) that eventually overpopulate the subependymoma component (pure PFSE ependymomas)

    HSV Infection Induces Production of ROS, which Potentiate Signaling from Pattern Recognition Receptors: Role for S-glutathionylation of TRAF3 and 6

    Get PDF
    The innate immune response constitutes the first line of defense against infections. Pattern recognition receptors recognize pathogen structures and trigger intracellular signaling pathways leading to cytokine and chemokine expression. Reactive oxygen species (ROS) are emerging as an important regulator of some of these pathways. ROS directly interact with signaling components or induce other post-translational modifications such as S-glutathionylation, thereby altering target function. Applying live microscopy, we have demonstrated that herpes simplex virus (HSV) infection induces early production of ROS that are required for the activation of NF-κB and IRF-3 pathways and the production of type I IFNs and ISGs. All the known receptors involved in the recognition of HSV were shown to be dependent on the cellular redox levels for successful signaling. In addition, we provide biochemical evidence suggesting S-glutathionylation of TRAF family proteins to be important. In particular, by performing mutational studies we show that S-glutathionylation of a conserved cysteine residue of TRAF3 and TRAF6 is important for ROS-dependent activation of innate immune pathways. In conclusion, these findings demonstrate that ROS are essential for effective activation of signaling pathways leading to a successful innate immune response against HSV infection

    Monoclonal Antibody and Fusion Protein Biosimilars Across Therapeutic Areas: A Systematic Review of Published Evidence

    Get PDF
    corecore