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Adaptive Interference Mitigation Using Frequency-
Selective Limiters over GPS Band for Automotive
Applications

Mahima Shukla!, Marina Y. Koledintseva'!, Michael Geiler', Scott Gillette!, Michael Hunnewell', and Anton L. Geiler',
"Metamagnetics, Inc., Westborough, MA, USA

Abstract— In this work, we address the challenges associated
with the necessity to protect Global Positioning system (GPS)
receivers from various types of electromagnetic interference
(EMI) generated by internal or external sources. We have
developed a compact, lightweight, and passive frequency
selective limiter (FSL) technology that automatically and
adaptively protects vulnerable input circuits of a GPS receiver
from unwanted emissions and prevents a GPS receiver from
going into saturation. This technology is based on using
magnetostatic surface waves in a magnetically biased ferrite
film. The nonlinear processes in ferrite films enable
discrimination of signals based on their power levels. In these
devices, the frequency-selective transmission response adjusts
rapidly and automatically, in real time, such that no portion of
the output spectrum exceeds a designated power threshold.
FSLs are capable of mitigating multiple interfering signals
without prior knowledge of the timing or the frequency content
of the interferers. A few examples of FSL design and measured
characteristics are provided for GPS L1 band.

Keywords—Receiver protection, communication radio, GPS,
EMI, Frequency Selective Limiter (FSL), Magnetostatic surface
waves (MSSW), frequency selective attenuation, sensitivity

[. INTRODUCTION

The biggest challenge faced by autonomous automobile
industry is electromagnetic interference (EMI) from the
internal and external interference sources [1]-[5]. Internal
interference source could be any electronic integrated circuit
(IC) within the system and this interference could be
controlled to a certain extent by effective EMI shielding
techniques. The main threat is external interference generated
by intentional or unintentional EMI from some transmitter,
in-band emissions, near-band emissions, as well as their
harmonics. The power, frequency, and waveform of external
interference are typically unknown in advance. Therefore, a
new technology is required to protect navigation and
communication links of autonomous (self-driving) vehicles.

EMI protection research for GPS receivers has primarily
been focused on producing high-performance systems
operating in highly stressed electronic environments [6]-[13].
However, GPS receivers used in automotive applications and
portable handheld devices cannot implement such high-end
EMI mitigation technologies due to stringent size, weight,
power, and cost requirements. They require compact,
lightweight, low-power, and inexpensive adaptive
interference mitigation capability.
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There is a technology called frequency selective limiters
(FSLs) (Fig.1) that can solve these problems [14]-[19].
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Fig. 1. FSLs protect the front-end of GPS from intense EMI and improve
signal-to-noise ratio (SNR) while simultaneously enabling continuous
reception of GPS signals for operation in denied environments. (Image of
cars is taken from [5]).

Herein, ferrite FSLs that automatically adaptively
attenuates RF interference are presented. The advantages of
the ferrite FSL electronic components are small size,
lightweight, and passivity — they do not need power for
operation. The FSL technology utilizes advanced magnetic
materials, in particular, thin ferrite films [15]. Such films,
mostly Yttrium Iron Garnet (YIG) monocrystals, are from a
few micrometers to a few dozen micrometers thick and are
grown or deposited on dielectric substrates made of
Gadolinium Gallium Garnet (GGG).

The non-linear microwave properties of ferrite films
enable automatic filtering of signals based on power level
[16]-[19]. FSLs discriminate input signals based on power
level and automatically attenuate signals that exceed a
designated power threshold. Below-threshold spectral
content of desired GPS/communication signals passes
through the FSL device unaffected, as illustrated in Fig. 2.
This power threshold and the frequency range of limiting can
be tailored to a specific application. FSLs can filter out
multiple interference signals simultaneously without prior
knowledge of the timing or the frequency content of the
interferers, continuously adapting to the electromagnetic
(EM) environment and enhancing signal reception. An FSL
requires no software, analog to digital converters, or complex
digital signal processing to operate.

A typical realizable FSLs at 1.5 GHz, have the quality
factor of Q~1000 i.e., ~ 1.5 MHz wide notch at -3dB level.
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Fig. 2. Signals with a power level above a pre-designated threshold are
automatically attenuated by FSL while, simultaneously, signals below
threshold pass through the device with small insertion loss. Frequency
adaptation occurs in less than a microsecond with a high degree of selectivity
and multiple rejection notches are supported.
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Fig. 3. (Top) FSL (5x5 mm QFN package) on a connectorized PCB for
evaluation.

Its functions are dictated by the physics of a special
magnetic (typically, ferrite) thin film material that interacts in
a nonlinear and highly controlled manner with the
electromagnetic energy. When EM energy is injected into a
circuit formed on the surface of the thin film material, it is
coupled to a purely magnetic domain where it manifests as
magnetostatic and/or spin waves. Unlike most electronic
devices that operate by propagating and manipulating
charges, FSL devices operate by coupling RF
electromagnetic energy to pure magnetic spin oscillations in
a biased ferrite medium that result in magnetostatic and
spinwaves. Strictly speaking, these are all spinwaves.
Magnetostatic waves are a particular case of spinwaves with
spinwave vector |k|~0, while spinwaves in the general have
broad range of wave vectors with high |k| magnitudes, as well
as so-called exchange energy between neighboring magnetic
moments. The micromagnetic dynamics of interaction
between electromagnetic field, static bias magnetic field, and
spin magnetic moments of ferrite medium follow quantum
physics rather than classical. However, for the design of our
devices, classical phenomenological magnetization motion
Landau-Lifshitz equation with dissipation represented in one
of the existing forms, e.g., the most widely used Gilbert form
[20], can be used. These spinwaves offer ability to provide
analog signal processing functions in the magnetic domain,
for example to provide high power interference suppression
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practically without affecting small signals (unless they
exactly fall into the filter passband), and then recouple back
into RF electromagnetic domain. An important feature of
magnetostatic and spin waves excited in ferrite films is that
they propagate at speeds much lower than speed of light, ~
10% m/s [21]. Therefore, devices based on these waves could
be miniature — see Fig. 3. The size could be as small as 5 mm?
and even less.

There are two types of FSLs, and basic configurations are
described in [16]-[19]. The first type is based on
magnetostatic surface waves propagating between two
metallic transducers (“antennas”) directly placed on the
ferrite film in, e.g., a microstrip structure with ferrite as a
substrate [16]. Coupling between electromagnetic and slow
magnetostatic surface waves (MSSW) occurs through these
transducers. When signal power is low, MSSWs propagate
between the transducers in the magnetically biased (in-plane,
parallel to transducers, and mainly perpendicular to RF H-
field on the line — so-called perpendicular pumping) ferrite
film with low loss. At the high-power levels above the
threshold, MSSWs no longer propagate, since they transform
to the multitude of parametrically excited spinwaves with
broad range of spin wave numbers. This is the so-called
spinwave instability [22]-[24]. This interrupts linear MSSW
propagation between the transducers. As a result,
electromagnetic signal is reflected. Since this happens in the
limited frequency range where power exceeds threshold, this
causes frequency-selective limiting. Overall, operational
frequency range is determined by the ferrite type, magnetic
bias field, and thickness of the film.

The second type is an absorptive FSL [15], [16], [19].
Absorptive FSLs operate in a different way. They contain a
regular planar transmission line (microstrip, stripline, co-
planar waveguide, slot-line, etc.) on a magnetically biased
ferrite substrate. Typically, d.c. bias magnetic field is
transverse to the direction of propagation along the line. This
provides mostly parallel RF pumping. However, in reality
pumping is always hybrid with both components — along bias
(parallel pumping) and perpendicular to it (perpendicular
pumping due to the structure of the field in a particular
transmission line.

There are input and output ports on this waveguide. When
low-power signal propagates along this line, it does not
experience significant loss or distortion. However, if power
is higher than the threshold, first, electromagnetic power
effectively couples to uniform magnetostatic modes [20], and
then these modes fall apart into a multitude of spinwave
vectors due to spinwave instability generated in the ferrite
substrate [19]-[25]. These chaotic spinwaves eventually
dissipate, and thus EM energy is absorbed. The longer the
line, the higher is the dissipation. However, at some very
high-power level, the system becomes saturated, and
electromagnetic energy can no longer be absorbed by
spinwaves. This is related to effects that could be explained
by quantum approach only (3-magnon splitting results in
recombination, and 4-magnon processes start taking place).
In the “classical” language this means that any spin magnetic
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system has some “capacity” to accumulate magnetic energy
from EM signal, and when this “capacity” is reached, limiting
no longer is possible with the same rate and can even be
stopped. This determines the upper limit of the limiting
dynamic range of an FSL.

For applications over the GPS band, the reflective-type
FSLs operating on MSSWs appear to be more suitable that
absorptive-type FSLs. The absorptive FSLs are usually
designed for more high-frequency applications than their
MSSW counterparts. In this work, it is shown that the FSLs
can be designed for operation at L1 band (~1575.42 GHz),
and interference mitigation for this GPS band is evaluated on
a commercial (u-Blox) GPS receiver.

II. CHARECTERISTICS OF FSL

An FSL device is characterized by insertion loss, power
threshold, frequency selectivity and dynamic range
parameters. The power characteristic of an ideal FSL device
is schematically shown in Fig. 4. The horizontal axis
represents input power and vertical axis is output power of
FSL. Power threshold is the minimum input RF power level,
at which the nonlinear limiting process in the FSL starts. A
good FSL design should have flat power limiting within the
given dynamic range. An FSL frequency-selectively limits
any spectral component that exceeds the pre-defined
threshold level, and in this sense, it operates with integrated
power of the input signals within the typical FSL absorption
band, which is close to the power spectral density, but not
quite the same. Note that all the measured data in this work is
obtained for continuous wave (CW) signals. In this case, if
interference signal has bandwidth BW< 1 MHz, then power
threshold will be the same as for CW signal. If EMI signal
BW>1 MHz, then power threshold should be the same as for
the CW signal plus 10 dB. Modulation type (FM, AM, or PM)
makes a difference, and the power threshold becomes
dependent on the modulation type, rate (depth), and
bandwidth.

e -~
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Saturation
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>
Power In P,

Limiting Dynamic Range

Fig. 4. An ideal FSL device characteristic has flat limiting over the
limiting dynamic range and should be nondispersive, means it should
have same response for all the frequencies in the operating band.

The MSSW FSLs have insertion loss typically on the
order of a few decibels. Loss can be approximated to a first
order as follows: for a monocrystal YIG ferrite with FMR
linewidth of AH= 1 Oe, the typical insertion loss (IL) in an
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FSL is on the order of 5+2 dB. However, IL of MSSW FSL
is a function of the power threshold. Very low-power
threshold devices (~ -40 dBm) may have IL ~-10 dB. Fig. 5
shows the measured power characteristics of an MSSW FSL
operating over the L-band (1-2 GHz). For input power less
than -17 dBm, FSL output power varies linearly with the
input power, and FSL is operating in linear regime. For input
power higher than -17 dBm, FSL output is held constant at -
20 dBm. There is seen flat limiting over the wide dynamic
range of input power. This measurement has been done up to
6 dBm input power.
10
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Fig.5. Measured power characteristics of MSSW FSL in L band (1.5
GHz). This FSL has power threshold of -17 dBm.
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Frequency selectivity of an FSL, as is shown in Fig. 6, is
measured by inserting a high-power signal along with signal
of interest at the input of FSL. At the output of the FSL,
insertion loss plots (transmission responses) are collected for
different input power of high-power signal. As is shown in
Fig. 6, an EMI at 1.5 GHz creates a notch in the insertion loss
plot of the FSL. It is seen that the FSL due to its frequency
selectively removes interfering frequency at 1.5 GHz with
selectivity bandwidth of FSL is <+ 5 MHz. This means that
the frequency component at 1.51 GHz will pass with linear
insertion loss.
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Fig.6. Selectivity plot of an FSL in L band with interfering signal at 1.5
GHz. FSL removes this interfering signal by attenuating it to -35 dB
without affecting small signal of interest outside the notch.

In linear regime (when power spectral density at the
input is below threshold), FSL functionality has no
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intermodulation distortion. This is because FSL is a passive
component that is in this case works as a passive filter.
However, in nonlinear regime (at power higher than
threshold), intermodulation distortion may take place. It
depends on the frequency difference between interfering
signal and signal of interest and the amplitude of interfering
signal. Though intermodulation products that may appear due
to the pulsed interference signals and their harmonics are an
inherent problem with any type of nonlinear devices, this
aspect is beyond the scope of the present paper.

II1. GPS PROTECTION WITH FSL

High power interference mitigation for a GPS receiver
can be demonstrated using an MSSW FSL device. The test is
created by adding interfering signals to the GPS transmitted
signal, which is the signal of interest (SOI). A test setup
consists of a commercial off-the-shelf GPS simulator, GPS
receiver, and an RF interference network. The block-diagram
of the test setup is shown in Fig. 7. The combined SOI and
interfering signal are applied at the input of the GPS receiver
using a switched path. One path is direct, and second path is
through FSL. Received data from the GPS receiver is
collected for both the paths.

GPS Si ‘
Low-noise
Amplifier

Variable
Attenuator

Directional
Coupler

GPS Receiver

3dB Combiner
Interference
Signal Generator

he results of the test simulations are shown in Fig. 8. On
the left of Fig. 8, it is demonstrated that at the absence of the
FSL protection at the input of the GPS receiver, it is not able
to see any satellite data due to interference by high power
interfering signal. However, on the right-hand part of Fig. 8,
when U-Blox receiver is protected by our FSL, it is able to
lock with more than three satellites.

With the signal level of -130 dBm, which is typical for
L1 band Coarse/Acquisition (C/A) code GPS, the signal-to-
noise (S/N) ratio has been improved by more than 10 dB for
a 50-dB continuous wave noise-to-signal ratio that was only
5 MHz away from the L1 (1.57542 GHz) frequency. This is
illustrated by Fig. 8. The receiver data is measured when the
GPS input signal is coupled with an interfering signal at
below -70 dBm power level. Without the FSL the receiver is
desensitized significantly, and the GPS signal is lost. The
FSL provides significant attenuation to the interfering signal,
reducing its power so that the receiver is no longer
desensitized and can continue receiving GPS data. Though
FSLs have shown frequency-selective limiting ability with
CW signals, the similar performance is expected for pulse
interference.

Fig. 7. GPS-FSL test setup
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IV.CONCLUSIONS

Herein, it is shown that ferrite FSLs based on
magnetostatic surface waves and non-linear phenomena in
ferrite films can be used to protect sensitive receivers from
high power interfering signals. Since FSL limits signal levels
based on their power, it is capable of operating at any
frequency and type of waveform. FSL also allow for
increasing the effective dynamic range by selectively
attenuating only the interfering signal. FSL does not require
a prior knowledge of interfering signal, hence it is best
suitable solution for the systems which are exposed to wide
open spectrum. The FSL can be designed to meet the
requirements of any size for a moving vehicle. Due to its
small size and passive nature, it can be a part of existing
predesigned system as well.

In this work, we studied only interference near the GPS
band. However, it may happen that an unintentional
interference may fall into the band of the signal of interest.
This scenario could be treated using a so-called frequency-
selective canceller [26]. However, this is beyond the scope of
the present paper.
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U-Blox receiver is protected by an FSL, it is able to lock with more than three satellites.
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