331 research outputs found

    Rheumatoid synovial fluid interleukin-17-producing CD4 T cells have abundant tumor necrosis factor-alpha co-expression, but little interleukin-22 and interleukin-23R expression

    Get PDF
    Introduction\ud Th17 cells have been implicated in the pathogenesis of rheumatoid arthritis (RA). The aim of this study was to systematically analyse the phenotype, cytokine profile and frequency of interleukin-17 (IL-17) producing CD4-positive T cells in mononuclear cells isolated from peripheral blood, synovial fluid and synovial tissue of RA patients with established disease, and to correlate cell frequencies with disease activity. \ud \ud Methods\ud Flow cytometry was used to analyse the phenotype and cytokine production of mononuclear cells isolated from peripheral blood (PBMC) (n = 44), synovial fluid (SFMC) (n = 14) and synovium (SVMC) (n = 10) of RA patients and PBMC of healthy controls (n = 13). \ud \ud Results\ud The frequency of IL-17-producing CD4 T cells was elevated in RA SFMC compared with RA PBMC (P = 0.04). However, the frequency of this population in RA SVMC was comparable to that in paired RA PBMC. The percentage of IL-17-producing CD4 T cells coexpressing tumor necrosis factor alpha (TNFα) was significantly increased in SFMC (P = 0.0068). The frequency of IFNγ-producing CD4 T cells was also significantly higher in SFMC than paired PBMC (P = 0.042). The majority of IL-17-producing CD4 T cells coexpressed IFNγ. IL-17-producing CD4 T cells in RA PBMC and SFMC exhibited very little IL-22 or IL-23R coexpression. \ud \ud Conclusions\ud These findings demonstrate a modest enrichment of IL-17-producing CD4 T cells in RA SFMC compared to PBMC. Th17 cells in SFMC produce more TNFα than their PBMC counterparts, but are not a significant source of IL-22 and do not express IL-23R. However, the percentage of CD4 T cells which produce IL-17 in the rheumatoid joint is low, suggesting that other cells may be alternative sources of IL-17 within the joints of RA patients. \ud \u

    Comparative analysis of inflamed and non-inflamed colon biopsies reveals strong proteomic inflammation profile in patients with ulcerative colitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate diagnostic and monitoring tools for ulcerative colitis (UC) are missing. Our aim was to describe the proteomic profile of UC and search for markers associated with disease exacerbation. Therefore, we aimed to characterize specific proteins associated with inflamed colon mucosa from patients with acute UC using mass spectrometry-based proteomic analysis.</p> <p>Methods</p> <p>Biopsies were sampled from rectum, sigmoid colon and left colonic flexure from twenty patients with active proctosigmoiditis and from four healthy controls for proteomics and histology. Proteomic profiles of whole colonic biopsies were characterized using 2D-gel electrophoresis, and peptide mass fingerprinting using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was applied for identification of differently expressed protein spots.</p> <p>Results</p> <p>A total of 597 spots were annotated by image analysis and 222 of these had a statistically different protein level between inflamed and non-inflamed tissue in the patient group. Principal component analysis clearly grouped non-inflamed samples separately from the inflamed samples indicating that the proteomic signature of colon mucosa with acute UC is strong. Totally, 43 individual protein spots were identified, including proteins involved in energy metabolism (triosephosphate isomerase, glycerol-3-phosphate-dehydrogenase, alpha enolase and L-lactate dehydrogenase B-chain) and in oxidative stress (superoxide dismutase, thioredoxins and selenium binding protein).</p> <p>Conclusions</p> <p>A distinct proteomic profile of inflamed tissue in UC patients was found. Specific proteins involved in energy metabolism and oxidative stress were identified as potential candidate markers for UC.</p

    Selective Impairment of TH17-Differentiation and Protection against Autoimmune Arthritis after Overexpression of BCL2A1 in T Lymphocytes

    Get PDF
    The inhibition of apoptotic cell death in T cells through the dysregulated expression of BCL2 family members has been associated with the protection against the development of different autoimmune diseases. However, multiple mechanisms were proposed to be responsible for such protective effect. The purpose of this study was to explore the effect of the Tcell overexpression of BCL2A1, an anti-apoptotic BCL2 family member without an effect on cell cycle progression, in the development of collagen-induced arthritis. Our results demonstrated an attenuated development of arthritis in these transgenic mice. The protective effect was unrelated to the suppressive activity of regulatory T cells but it was associated with a defective activation of p38 mitogen-activated protein kinase in CD4+ cells after in vitro TCR stimulation. In addition, the in vitro and in vivo TH17 differentiation were impaired in BCL2A1 transgenic mice. Taken together, we demonstrated here a previously unknown role for BCL2A1 controlling the activation of CD4+ cells and their differentiation into pathogenic proinflammatory TH17 cells and identified BCL2A1 as a potential target in the control of autoimmune/inflammatory diseases

    Ganglioside GM3 Has an Essential Role in the Pathogenesis and Progression of Rheumatoid Arthritis

    Get PDF
    Rheumatoid arthritis (RA), a chronic systemic inflammatory disorder that principally attacks synovial joints, afflicts over 2 million people in the United States. Interleukin (IL)-17 is considered to be a master cytokine in chronic, destructive arthritis. Levels of the ganglioside GM3, one of the most primitive glycosphingolipids containing a sialic acid in the structure, are remarkably decreased in the synovium of patients with RA. Based on the increased cytokine secretions observed in in vitro experiments, GM3 might have an immunologic role. Here, to clarify the association between RA and GM3, we established a collagen-induced arthritis mouse model using the null mutation of the ganglioside GM3 synthase gene. GM3 deficiency exacerbated inflammatory arthritis in the mouse model of RA. In addition, disrupting GM3 induced T cell activation in vivo and promoted overproduction of the cytokines involved in RA. In contrast, the amount of the GM3 synthase gene transcript in the synovium was higher in patients with RA than in those with osteoarthritis. These findings indicate a crucial role for GM3 in the pathogenesis and progression of RA. Control of glycosphingolipids such as GM3 might therefore provide a novel therapeutic strategy for RA

    Clinical predictors of inflammatory bowel disease in a genetically well-defined Caucasian population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Crohn's disease (CD) and ulcerative colitis (UC), the two main types of inflammatory bowel disease (IBD), are multifactorial conditions of unknown etiology. The objective of this study is to examine the combined gene-environment interactions influencing IBD susceptibility in a well-defined Caucasian cohort in rural mid-America.</p> <p>Methods</p> <p>Patients were diagnosed to have CD or UC using conventional radiologic, endoscopic, and/or histopathologic findings. Histological diagnosis was made by a single specialist gastrointestinal pathologist with a particular interest in IBD. Information regarding cigarette smoke exposure was obtained by administration of the Behavioral Risk Factor Surveillance System Survey (BRFSS) to all patients. Genomic DNA was extracted from peripheral blood leukocytes, and polymerase chain reaction (PCR) amplification and genotyping were performed for 11 Single Nucleotide Polymorphisms (SNP) in <it>NOD2</it>, <it>IL23r</it>, <it>OCTN1 </it>genes along with <it>IGR</it>.</p> <p>Results</p> <p>Our cohort consists of 1196 patients: 435 controls, 485 CD patients, and 276 UC patients. Only patients with genotype data for at least 7 of 11 SNPs were included in our data analysis. The control groups for all 11 SNPs were in Hardy-Weinberg Equilibrium. In genotype-association SNP analysis, all <it>NOD2 </it>SNPs (rs5743293, rs2066844, rs2066845) and the <it>IL23r </it>SNP (rs11465804) showed a significant association to IBD (<it>p </it>< 0.03). A multiple gene-interaction analysis showed an association between <it>NOD2 </it>and <it>IL23r </it>with UC (<it>p </it>= 0.04). There were no associations between any <it>OCTN1 </it>and <it>IGR </it>SNPs and IBD in this cohort. A multivariable logistic regression analysis showed that female gender, "current" or "former" smoking status, family history of IBD, and <it>NOD2 </it>SNP minor alleles were associated with CD.</p> <p>Conclusion</p> <p>IBD remains to be challenging to properly diagnose, characterize, and treat. Our study proposes a combined genetic, phenotypic, and environmental approach in an attempt to better understand IBD. Previously demonstrated associations between OCTN1 and IGR and IBD were not confirmed.</p

    Effect of oral lactulose on clinical and immunohistochemical parameters in patients with inflammatory bowel disease: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prebiotic potential of lactulose is well established and preclinical studies demonstrated a protective effect of lactulose in murine models of colitis. The aim of the present study was to investigate the clinical and histological efficacy of lactulose in patients with inflammatory bowel disease (IBD), for which probiotic therapy yielded promising results.</p> <p>Methods</p> <p>Patients were treated with standard medication alone or combined with 10 g lactulose daily as adjuvant therapy for 4 months. Clinical efficacy of treatment was assessed using clinical activity indices, a quality of life index (IBDQ), endoscopic scores, defecation frequency and monitoring corticosteroid medication. Orsomucoid, alpha1-antitrypsin and other laboratory parameters were determined. In addition, in some participants colonic biopsies were analyzed with haematoxylin-eosin staining or with antibodies against HLA-DR, CD68, IgA and CD3, and evaluated systematically. All measurements were performed both at enrolment and at the end of the trial.</p> <p>Results</p> <p>14 patients presenting ulcerative colitis (UC) and 17 patients presenting Crohn's disease (CD), most of them in a clinically active state, were enrolled in this pilot study. After 4 month no significant improvement of clinical activity index, endoscopic score or immunohistochemical parameters was observed in CD or UC patients receiving lactulose in comparison to the control group. However, significant improvement of quality of life was observed in UC patients receiving lactulose compared to the control group (p = 0.04).</p> <p>Conclusion</p> <p>The findings of the present pilot study indicate that oral lactulose has no beneficial effects in IBD patients in particular with regard to clinical activity, endoscopic score or immunohistochemical parameters. The importance of the beneficial effect of lactulose in UC patients regarding the quality of life needs further evaluation in larger controlled clinical trials.</p> <p>Trial registration</p> <p>Current Controlled Trials ISRCTN92101486</p

    Early Production of IL-22 but Not IL-17 by Peripheral Blood Mononuclear Cells Exposed to live Borrelia burgdorferi: The Role of Monocytes and Interleukin-1

    Get PDF
    If insufficiently treated, Lyme borreliosis can evolve into an inflammatory disorder affecting skin, joints, and the CNS. Early innate immunity may determine host responses targeting infection. Thus, we sought to characterize the immediate cytokine storm associated with exposure of PBMC to moderate levels of live Borrelia burgdorferi. Since Th17 cytokines are connected to host defense against extracellular bacteria, we focused on interleukin (IL)-17 and IL-22. Here, we report that, despite induction of inflammatory cytokines including IL-23, IL-17 remained barely detectable in response to B. burgdorferi. In contrast, T cell-dependent expression of IL-22 became evident within 10 h of exposure to the spirochetes. This dichotomy was unrelated to interferon-γ but to a large part dependent on caspase-1 and IL-1 bioactivity derived from monocytes. In fact, IL-1β as a single stimulus induced IL-22 but not IL-17. Neutrophils display antibacterial activity against B. burgdorferi, particularly when opsonized by antibodies. Since neutrophilic inflammation, indicative of IL-17 bioactivity, is scarcely observed in Erythema migrans, a manifestation of skin inflammation after infection, protective and antibacterial properties of IL-22 may close this gap and serve essential functions in the initial phase of spirochete infection

    Th17 cytokines and arthritis

    Get PDF
    Th17 cells are implicated in human autoimmune diseases, such as rheumatoid arthritis (RA), although it has not been established whether this persistent destructive arthritis is driven by Th1 and/or Th17 cells. Interleukin-17A (IL-17A) contributes to the pathogenesis of arthritis as has been shown in several experimental arthritis models. Importantly, recent data from first clinical trials with anti-IL-17A antibody treatment in psoriatic arthritis patients and RA patients looks promising. This review summarizes the findings about the role of Th17 cells in arthritis and discusses the impact of the different Th17 cytokines in the pathogenesis of this disease. However, further studies are needed to unravel the interplay between IL-17A and other Th17 cytokines such as IL-17F, IL-22, and IL-21 in the pathoimmunological process of this crippling disease, in particular, whether regulating Th17 cell activity or specific combinations of Th17 cytokines will have additional value compared to neutralizing IL-17A activity alone. Moreover, tumor necrosis factor-positive Th17 cells are discussed as potential dangerous cells in driving persistent arthritis in human early RA
    corecore