2,772 research outputs found
Monte Carlo modeling of atomic oxygen attack of polymers with protective coatings on LDEF
Characterization of the behavior of atomic oxygen interaction with materials on the Long Duration Exposure Facility (LDEF) assists in understanding of the mechanisms involved. Thus the reliability of predicting in-space durability of materials based on ground laboratory testing should be improved. A computational model which simulates atomic oxygen interaction with protected polymers was developed using Monte Carlo techniques. Through the use of an assumed mechanistic behavior of atomic oxygen interaction based on in-space atomic oxygen erosion of unprotected polymers and ground laboratory atomic oxygen interaction with protected polymers, prediction of atomic oxygen interaction with protected polymers on LDEF was accomplished. However, the results of these predictions are not consistent with the observed LDEF results at defect sites in protected polymers. Improved agreement between observed LDEF results and predicted Monte Carlo modeling can be achieved by modifying of the atomic oxygen interactive assumptions used in the model. LDEF atomic oxygen undercutting results, modeling assumptions, and implications are presented
Detectability of atmospheric features of Earth-like planets in the habitable zone around M dwarfs
We investigate the detectability of atmospheric spectral features of
Earth-like planets in the habitable zone (HZ) around M dwarfs with the future
James Webb Space Telescope (JWST). We use a coupled 1D climate-chemistry-model
to simulate the influence of a range of observed and modelled M-dwarf spectra
on Earth-like planets. The simulated atmospheres served as input for the
calculation of the transmission spectra of the hypothetical planets, using a
line-by-line spectral radiative transfer model. To investigate the
spectroscopic detectability of absorption bands with JWST we further developed
a signal-to-noise ratio (S/N) model and applied it to our transmission spectra.
High abundances of CH and HO in the atmosphere of Earth-like planets
around mid to late M dwarfs increase the detectability of the corresponding
spectral features compared to early M-dwarf planets. Increased temperatures in
the middle atmosphere of mid- to late-type M-dwarf planets expand the
atmosphere and further increase the detectability of absorption bands. To
detect CH, HO, and CO in the atmosphere of an Earth-like planet
around a mid to late M dwarf observing only one transit with JWST could be
enough up to a distance of 4 pc and less than ten transits up to a distance of
10 pc. As a consequence of saturation limits of JWST and less pronounced
absorption bands, the detection of spectral features of hypothetical Earth-like
planets around most early M dwarfs would require more than ten transits. We
identify 276 existing M dwarfs (including GJ 1132, TRAPPIST-1, GJ 1214, and LHS
1140) around which atmospheric absorption features of hypothetical Earth-like
planets could be detected by co-adding just a few transits. We show that using
transmission spectroscopy, JWST could provide enough precision to be able to
partly characterise the atmosphere of Earth-like TESS planets around mid to
late M dwarfs.Comment: 18 pages, 10 figure
The extrasolar planet Gliese 581 d: a potentially habitable planet? (Corrigendum to arXiv:1009.5814)
We report here that the equation for H2O Rayleigh scattering was incorrectly
stated in the original paper [arXiv:1009.5814]. Instead of a quadratic
dependence on refractivity r, we accidentally quoted an r^4 dependence. Since
the correct form of the equation was implemented into the model, scientific
results are not affected.Comment: accepted to Astronomy&Astrophysic
Análise e melhoria de processo do Serviço de Atendimento ao Cidadão (SAC) da Embrapa Florestas.
bitstream/CNPF-2009-09/42630/1/Doc156.pdf1 CD-RO
A new and efficient approach to time-dependent density-functional perturbation theory for optical spectroscopy
Using a super-operator formulation of linearized time-dependent
density-functional theory, the dynamical polarizability of a system of
interacting electrons is given a matrix continued-fraction representation whose
coefficients can be obtained from the non-symmetric block-Lanczos method. The
resulting algorithm allows for the calculation of the {\em full spectrum} of a
system with a computational workload which is only a few times larger than that
needed for {\em static} polarizabilities within time-independent
density-functional perturbation theory. The method is demonstrated with the
calculation of the spectrum of benzene, and prospects for its application to
the large-scale calculation of optical spectra are discussed.Comment: 4 pages, 2 figure
Magnons in real materials from density-functional theory
We present an implementation of the adiabatic spin-wave dynamics of Niu and
Kleinman. This technique allows to decouple the spin and charge excitations of
a many-electron system using a generalization of the adiabatic approximation.
The only input for the spin-wave equations of motion are the energies and Berry
curvatures of many-electron states describing frozen spin spirals. The latter
are computed using a newly developed technique based on constrained
density-functional theory, within the local spin density approximation and the
pseudo-potential plane-wave method. Calculations for iron show an excellent
agreement with experiments.Comment: 1 LaTeX file and 1 postscript figur
Measuring Gravito-magnetic Effects by Multi Ring-Laser Gyroscope
We propose an under-ground experiment to detect the general relativistic
effects due to the curvature of space-time around the Earth (de Sitter effect)
and to rotation of the planet (dragging of the inertial frames or
Lense-Thirring effect). It is based on the comparison between the IERS value of
the Earth rotation vector and corresponding measurements obtained by a
tri-axial laser detector of rotation. The proposed detector consists of six
large ring-lasers arranged along three orthogonal axes.
In about two years of data taking, the 1% sensitivity required for the
measurement of the Lense-Thirring drag can be reached with square rings of 6
side, assuming a shot noise limited sensitivity ().
The multi-gyros system, composed of rings whose planes are perpendicular to one
or the other of three orthogonal axes, can be built in several ways. Here, we
consider cubic and octahedron structures. The symmetries of the proposed
configurations provide mathematical relations that can be used to study the
stability of the scale factors, the relative orientations or the ring-laser
planes, very important to get rid of systematics in long-term measurements,
which are required in order to determine the relativistic effects.Comment: 24 pages, 26 Postscript figure
Oxytocin improves synchronisation in leader-follower interaction
The neuropeptide oxytocin has been shown to affect social interaction. Meanwhile, the underlying mechanism remains highly debated. Using an interpersonal finger-tapping paradigm, we investigated whether oxytocin affects the ability to synchronise with and adapt to the behaviour of others. Dyads received either oxytocin or a non-active placebo, intranasally. We show that in conditions where one dyad-member was tapping to another unresponsive dyad-member – i.e. one was following another who was leading/self-pacing – dyads given oxytocin were more synchronised than dyads given placebo. However, there was no effect when following a regular metronome or when both tappers were mutually adapting to each other. Furthermore, relative to their self-paced tapping partners, oxytocin followers were less variable than placebo followers. Our data suggests that oxytocin improves synchronisation to an unresponsive partner’s behaviour through a reduction in tapping-variability. Hence, oxytocin may facilitate social interaction by enhancing sensorimotor predictions supporting interpersonal synchronisation. The study thus provides novel perspectives on how neurobiological processes relate to socio-psychological behaviour and contributes to the growing evidence that synchronisation and prediction are central to social cognition
Clouds in the atmospheres of extrasolar planets. I. Climatic effects of multi-layered clouds for Earth-like planets and implications for habitable zones
The effects of multi-layered clouds in the atmospheres of Earth-like planets
orbiting different types of stars are studied. The radiative effects of cloud
particles are directly correlated with their wavelength-dependent optical
properties. Therefore the incident stellar spectra may play an important role
for the climatic effect of clouds. We discuss the influence of clouds with mean
properties measured in the Earth's atmosphere on the surface temperatures and
Bond albedos of Earth-like planets orbiting different types of main sequence
dwarf stars.Comment: accepted for publication in A&
Spin currents and spin dynamics in time-dependent density-functional theory
We derive and analyse the equation of motion for the spin degrees of freedom
within time-dependent spin-density-functional theory (TD-SDFT). Results are (i)
a prescription for obtaining many-body corrections to the single-particle spin
currents from the Kohn-Sham equation of TD-SDFT, (ii) the existence of an
exchange-correlation (xc) torque within TD-SDFT, (iii) a prescription for
calculating, from TD-SDFT, the torque exerted by spin currents on the spin
magnetization, (iv) a novel exact constraint on approximate xc functionals, and
(v) the discovery of serious deficiencies of popular approximations to TD-SDFT
when applied to spin dynamics.Comment: now includes discussion of OEP and GGA; to appear in Phys. Rev. Let
- …
