692 research outputs found

    More on softly broken N=2 QCD

    Get PDF
    We extend previous work on the soft breaking of N=2N=2 supersymmetric QCD. We present the formalism for the breaking due to a dilaton spurion for a general gauge group and obtain the exact effective potential. We obtain some general features of the vacuum structure in the pure SU(N)SU(N) Yang-Mills theory and we also derive a general mass formula for this class of theories, in particular we present explicit results for the mass spectrum in the SU(2)SU(2) case. Finally we analyze the vacuum structure of the SU(2)SU(2) theory with one massless hypermultiplet. This theory presents dyon condensation and a first order phase transition in the supersymmetry breaking parameter driven by non-mutually local BPS states. This could be a hint of Argyres-Douglas-like phases in non-supersymmetric gauge theories.Comment: 35 pages, 9 Postscript figure

    Generalized Dirichlet Branes and Zero-modes

    Get PDF
    We investigate the effective dynamics of an arbitrary Dirichlet p-brane, in a path-integral formalism, by incorporating the massless excitations of closed string modes in open bosonic string theory. It is shown that the closed string background fields in the bosonic sector of type II theories induce invariant extrinsic curvature on the world-volume. In addition, the curvature can be seen to be associated with a divergence at the boundary of string world-sheet. The re-normalization of the collective coordinates, next to leading order in its derivative expansion, is performed to handle the divergence and the effective dynamics is encoded in Dirac-Born-Infeld action. Furthermore, the collective dynamics is generalized to include appropriate fermionic partners in type I super-string theory. The role of string modes is reviewed in terms of the collective coordinates and the gauge theory on the world-volume is argued to be non-local in presence of the U(1) invariant field strength.Comment: LaTex, 20 pages, v2: minor changes and added references v3:typos corrected, some statements are clarified in the context of zero-mode

    Topics in String Theory and Quantum Gravity

    Full text link
    These are the lecture notes for the Les Houches Summer School on Quantum Gravity held in July 1992. The notes present some general critical assessment of other (non-string) approaches to quantum gravity, and a selected set of topics concerning what we have learned so far about the subject from string theory. Since these lectures are long (133 A4 pages), we include in this abstract the table of contents, which should help the user of the bulletin board in deciding whether to latex and print the full file. 1-FIELD THEORETICAL APPROACH TO QUANTUM GRAVITY: Linearized gravity; Supergravity; Kaluza-Klein theories; Quantum field theory and classical gravity; Euclidean approach to Quantum Gravity; Canonical quantization of gravity; Gravitational Instantons. 2-CONSISTENCY CONDITIONS: ANOMALIES: Generalities about anomalies; Spinors in 2n dimensions; When can we expect to find anomalies?; The Atiyah-Singer Index Theorem and the computation of anomalies; Examples: Green-Schwarz cancellation mechanism and Witten's SU(2) global anomaly. 3-STRING THEORY I. BOSONIC STRING: Bosonic string; Conformal Field Theory; Quantization of the bosonic string; Interaction in string theory and the characterization of the moduli space; Bosonic strings with background fields. Stringy corrections to Einstein equations; Toroidal compactifications. RR-duality; Operator formalism 4-STRING THEORY II. FERMIONIC STRINGS: Fermionic String; Heterotic String; Strings at finite temperature; Is string theory finite? 5-OTHER DEVELOPMENTS AND CONCLUSIONS: String ``Phenomenology''; Black Holes and Related SubjectsComment: 133 pages, 22 figures (not included, available upon request), LaTe

    Comments on Noncommutative Field Theories

    Full text link
    We discuss some aspects of noncommutative quantum field theories obtained from the Seiberg-Witten limit of string theories in the presence of an external B-field. General properties of these theories are studied as well as the phenomenological potential of noncommutative QED.Comment: 15 pages. Based on talks at the 9th Adriatic Meeting (Dubrovnik, Croatia) and at String Phenomenology 2003 (Durham, UK). v2 references adde

    Remarks on Time-Space Noncommutative Field Theories

    Get PDF
    We propose a physical interpretation of the perturbative breakdown of unitarity in time-like noncommutative field theories in terms of production of tachyonic particles. These particles may be viewed as a remnant of a continuous spectrum of undecoupled closed-string modes. In this way, we give a unified view of the string-theoretical and the field-theoretical no-go arguments against time-like noncommutative theories. We also perform a quantitative study of various locality and causality properties of noncommutative field theories at the quantum level.Comment: 19 pages, LaTe

    Superloop Equations and Two Dimensional Supergravity

    Full text link
    We propose a discrete model whose continuum limit reproduces the string susceptibility and the scaling dimensions of (2,4m)(2,4m)-minimal superconformal models coupled to 2D2D-supergravity. The basic assumption in our presentation is a set of super-Virasoro constraints imposed on the partition function. We recover the Neveu-Schwarz and Ramond sectors of the theory, and we are also able to evaluate all planar loop correlation functions in the continuum limit. We find evidence to identify the integrable hierarchy of non-linear equations describing the double scaling limit as a supersymmetric generalization of KP studied by Rabin.Comment: 34 page

    Direct T-violation measurements and T-odd effects in decay experiments

    Get PDF
    Motivated by the recent experimental announcements for direct measurements of time-reversal non-invariance in the neutral kaon system, we make a comparative discussion of the CPLEAR and KTeV measurements. The most suitable way to consistently incorporate the mixing, the time evolution and the decays of kaons, is to describe the neutral kaon system as a system with a non-Hermitean Hamiltonian. In this framework, the physical (decaying) incoming and outgoing states are distinct and belong to dual spaces. Moreover, since they are eigenstates of the full Hamiltonian, they never oscillate. This is directly manifest in the orthogonality conditions of the physical states, which entirely determine the evolution of the kaon system. Along these lines we conclude: CPLEAR studies K0-bar{K0} oscillations, a process where initial and final states can be reversed, the CPLEAR asymmetry being an effect directly related to the definition of time-reversal. Conclusively, CPLEAR provides a direct measurement of T-violation without any assumption either on unitarity or on CPT-invariance. The KTeV experiment studies in particular the process KL -> pi+ pi- e+ e- where they measure a T-odd effect. However, using unitarity together with estimates of the final state interactions, it should be possible to determine whether this effect can be identified with a genuine T-reversal violation.Comment: 11 pages, no figures. Presented at the 34th Rencontres de Moriond on Electroweak Interactions and Unified Theories, Les Arcs, 13-20 March, 199

    Some Global Aspects of Duality is String Theory

    Full text link
    We explore some of the global aspects of duality transformations in String Theory and Field Theory. We analyze in some detail the equivalence of dual models corresponding to different topologies at the level of the partition function and in terms of the operator correspondence for abelian duality. We analyze the behavior of the cosmological constant under these transformations. We also explore several examples of non-abelian duality where the classical background interpretation can be maintained for the original and the dual theories. In particular we construct a non-abelian dual of SL(2,R)SL(2,R) which turns out to be a three-dimensional black holeComment: 31pp. One figure available upon request. CERN-TH-6991/6

    Powering AGNs with super-critical black holes

    Full text link
    We propose a novel mechanism for powering the central engines of Active Galactic Nuclei through super-critical (type II) black hole collapse. In this picture, ~103M⊙10^3 M_\odot of material collapsing at relativistic speeds can trigger a gravitational shock, which can eject a large percentage of the collapsing matter at relativistic speeds, leaving behind a "light" black hole. In the presence of a poloidal magnetic field, the plasma collimates along two jets, and the associated electron synchrotron radiation can easily account for the observed radio luminosities, sizes and durations of AGN jets. For Lorentz factors of order 100 and magnetic fields of a few hundred μG\mu G, synchrotron electrons can shine for 10610^6 yrs, producing jets of sizes of order 100 kpc. This mechanism may also be relevant for Gamma Ray Bursts and, in the absence of magnetic field, supernova explosions.Comment: 4 pages, 1 figur

    Space-time noncommutativity and (1+1) Higgs Model

    Full text link
    We compare the classical scattering of kinks in (1+1) Higgs model with its analogous noncommutative counterpart. While at a classical level we are able to solve the scattering at all orders finding a smooth solution, at a noncommutative level we present only perturbative results, suggesting the existence of a smooth solution also in this case.Comment: 18 pages, 2 figure
    • …
    corecore