8 research outputs found
2 collectivity in shell-model calculations for odd-mass nuclei near
Shell-model calculations for 127,129In and 129,131Sb are presented, and interpreted in the context of the particle-core coupling scheme, wherein proton g9/2 holes or g7/2 particles are added to semimagic 128,130Sn cores. These results indicate that the particle-core coupling scheme is appropriate for the Sb isotopes, whilst less so for the In isotopes. B(E2) excitation strengths are also calculated, and show evidence of enhanced collectivity in both Sb isotopes, especially 131Sb. This observation suggests that 131Sb would be an excellent case for an experimental study seeking to investigate the early onset of collectivity near 132Sn
E2 collectivity in shell-model calculations for odd-mass nuclei near 132Sn
Shell-model calculations for 127,129In and 129,131Sb are presented, and interpreted in the context of the particle-core coupling scheme, wherein proton g9/2 holes or g7/2 particles are added to semimagic 128,130Sn cores. These results indicate that the particle-core coupling scheme is appropriate for the Sb isotopes, whilst less so for the In isotopes. B(E2) excitation strengths are also calculated, and show evidence of enhanced collectivity in both Sb isotopes, especially 131Sb. This observation suggests that 131Sb would be an excellent case for an experimental study seeking to investigate the early onset of collectivity near 132Sn
Quantitative image quality evaluation of MR images using perceptual difference models
The authors are using a perceptual difference model (Case-PDM) to quantitatively evaluate image quality of the thousands of test images which can be created when optimizing fast magnetic resonance (MR) imaging strategies and reconstruction techniques. In this validation study, they compared human evaluation of MR images from multiple organs and from multiple image reconstruction algorithms to Case-PDM and similar models. The authors found that Case-PDM compared very favorably to human observers in double-stimulus continuous-quality scale and functional measurement theory studies over a large range of image quality. The Case-PDM threshold for nonperceptible differences in a 2-alternative forced choice study varied with the type of image under study, but was ≈1.1 for diffuse image effects, providing a rule of thumb. Ordering the image quality evaluation models, we found in overall Case-PDM ≈ IDM (Sarnoff Corporation) ≈ SSIM [Wang et al. IEEE Trans. Image Process. 13, 600–612 (2004)] > mean squared error ≈ NR [Wang et al. (2004) (unpublished)] > DCTune (NASA) > IQM (MITRE Corporation). The authors conclude that Case-PDM is very useful in MR image evaluation but that one should probably restrict studies to similar images and similar processing, normally not a limitation in image reconstruction studies