16 research outputs found

    Major prognostic value of modeled AUC hCG-AFP

    No full text

    Predictive values of hCG clearance for risk of methotrexate resistance in low-risk gestational trophoblastic neoplasias.

    No full text
    International audienceBACKGROUND: Early identification of patients at high risk for chemoresistance among those treated with methotrexate (MTX) for low-risk gestational trophoblastic neoplasia (GTN) is needed. We modeled human chorionic gonadotropin (hCG) decline during MTX therapy using a kinetic population approach to calculate individual hCG clearance (CL(hCG)) and assessed the predictive value of CL(hCG) for MTX resistance. PATIENTS AND METHODS: A total of 154 patients with low-risk GTN treated with 8-day MTX regimen were retrospectively studied. NONMEM was used to model hCG decrease equations between day 0 and day 40 of chemotherapy. Receiver operating characteristic curve analysis defined the best CL(hCG) threshold. Univariate/multivariate survival analyses determined the predictive value of CL(hCG) and compared it with published predictive factors. RESULTS: A monoexponential equation best modeled hCG decrease: hCG(t) = 3900 x e(-0.149 x t). Median CL(hCG) was 0.57 l/day (quartiles: 0.37-0.74). Only choriocarcinoma pathology [yes versus no: hazard ratio (HR) = 6.01; 95% confidence interval (CI) 2.2-16.6; P 0.37 l/day: HR = 6.75; 95% CI 2.7-16.8; P < 0.001) were significant independent predictive factors of MTX resistance risk. CONCLUSION: In the second largest cohort of low-risk GTN patients reported to date, choriocarcinoma pathology and CL(hCG) < or =0.37 l/day were major independent predictive factors for MTX resistance risk

    Predictive values of hCG clearance for risk of methotrexate resistance in low-risk gestational trophoblastic neoplasias.

    No full text
    International audienceBACKGROUND: Early identification of patients at high risk for chemoresistance among those treated with methotrexate (MTX) for low-risk gestational trophoblastic neoplasia (GTN) is needed. We modeled human chorionic gonadotropin (hCG) decline during MTX therapy using a kinetic population approach to calculate individual hCG clearance (CL(hCG)) and assessed the predictive value of CL(hCG) for MTX resistance. PATIENTS AND METHODS: A total of 154 patients with low-risk GTN treated with 8-day MTX regimen were retrospectively studied. NONMEM was used to model hCG decrease equations between day 0 and day 40 of chemotherapy. Receiver operating characteristic curve analysis defined the best CL(hCG) threshold. Univariate/multivariate survival analyses determined the predictive value of CL(hCG) and compared it with published predictive factors. RESULTS: A monoexponential equation best modeled hCG decrease: hCG(t) = 3900 x e(-0.149 x t). Median CL(hCG) was 0.57 l/day (quartiles: 0.37-0.74). Only choriocarcinoma pathology [yes versus no: hazard ratio (HR) = 6.01; 95% confidence interval (CI) 2.2-16.6; P 0.37 l/day: HR = 6.75; 95% CI 2.7-16.8; P < 0.001) were significant independent predictive factors of MTX resistance risk. CONCLUSION: In the second largest cohort of low-risk GTN patients reported to date, choriocarcinoma pathology and CL(hCG) < or =0.37 l/day were major independent predictive factors for MTX resistance risk

    Clinical Pharmacokinetics and Pharmacodynamics of Biologic Therapeutics for Treatment of Systemic Lupus Erythematosus

    No full text
    Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease with potentially severe clinical manifestation that mainly affects women of childbearing age. Patients who do not respond to standard-of-care therapies, such as corticosteroids and immunosuppressants, require biologic therapeutics that specifically target a single or multiple SLE pathogenesis pathways. This review summarizes the clinical pharmacokinetic and pharmacodynamic characteristics of biologic agents that are approved, used off-label, or in the active pipeline of drug development for SLE patients. Depending on the type of target, the interacting biologics may exhibit linear (non-specific) or nonlinear (target-mediated) disposition profiles, with terminal half-lives varying from approximately 1 week to 1 month. Biologics given by subcutaneous administration, which offers dosing flexibility over intravenous administration, demonstrated a relatively slow absorption with a time to maximum concentration of approximately 1 day to 2 weeks and a variable bioavailability of 30–82 %. The population pharmacokinetics of monoclonal antibodies were best described by a two-compartment model with central clearance and steady-state volume of distribution ranging from 0.176 to 0.215 L/day and 3.60–5.29 L, respectively. The between-subject variability in pharmacokinetic parameters were moderate (20–79 %) and could be partially explained by body size. The development of linked pharmacokinetic-pharmacodynamic models incorporating SLE disease biomarkers are an attractive strategy for use in dosing regimen simulation and optimization. The relationship between efficacy/adverse events and biologic concentration should be evaluated to improve clinical trial outcomes, especially for biologics in the advanced phase of drug development. New strategies, such as model-based precision dosing dashboards, could be utilized to incorporate information collected from therapeutic drug monitoring into pharmacokinetic/pharmacodynamic models to enable individualized dosing in real time
    corecore