3,713 research outputs found
Measurement of 0.25-3.2 GeV antiprotons in the cosmic radiation
The balloon-borne Isotope Matter-Antimatter Experiment (IMAX) was flown from Lynn Lake, Manitoba, Canada on 16–17 July 1992. Using velocity and magnetic rigidity to determine mass, we have directly measured the abundances of cosmic ray antiprotons and protons in the energy range from 0.25 to 3.2 GeV. Both the absolute flux of antiprotons and the antiproton/proton ratio are consistent with recent theoretical work in which antiprotons are produced as secondary products of cosmic ray interactions with the interstellar medium. This consistency implies a lower limit to the antiproton lifetime of ∼10 to the 7th yr
Non-gapped Fermi surfaces, quasiparticles and the anomalous temperature dependence of the near- electronic states in the CMR oxide LaSrMnO with
After years of research into colossal magnetoresistant (CMR) manganites using
bulk techniques, there has been a recent upsurge in experiments directly
probing the electronic states at or near the surface of the bilayer CMR
materials LaSrMnO using angle-resolved photoemission
or scanning probe microscopy. Here we report new, temperature dependent, angle
resolved photoemission data from single crystals with a doping level of
. The first important result is that there is no sign of a pseudogap in
the charge channel of this material for temperatures below the Curie
temperature . The second important result concerns the temperature
dependence of the electronic states. The temperature dependent changes in the
Fermi surface spectra both at the zone face and zone diagonal regions in
-space indicate that the coherent quasiparticle weight disappears for
temperatures significantly above , and that the -dependence of the
T-induced changes in the spectra invalidate an interpretation of these data in
terms of the superposition of a `universal' metallic spectrum and an insulating
spectrum whose relative weight changes with temperature. In this sense, our
data are not compatible with a phase separation scenario.Comment: 6 pages, 4 figure
A general moment NRIXS approach to the determination of equilibrium Fe isotopic fractionation factors: application to goethite and jarosite
We measured the reduced partition function ratios for iron isotopes in
goethite FeO(OH), potassium-jarosite KFe3(SO4)2(OH)6, and hydronium-jarosite
(H3O)Fe3(SO4)2(OH)6, by Nuclear Resonant Inelastic X-Ray Scattering (NRIXS,
also known as Nuclear Resonance Vibrational Spectroscopy -NRVS- or Nuclear
Inelastic Scattering -NIS) at the Advanced Photon Source. These measurements
were made on synthetic minerals enriched in 57Fe. A new method (i.e., the
general moment approach) is presented to calculate {\beta}-factors from the
moments of the NRIXS spectrum S(E). The first term in the moment expansion
controls iron isotopic fractionation at high temperature and corresponds to the
mean force constant of the iron bonds, a quantity that is readily measured and
often reported in NRIXS studies.Comment: 38 pages, 2 tables, 8 figures. In press at Geochimica et Cosmochimica
Acta. Appendix C contains new derivations relating the moments of the iron
PDOS to the moments of the excitation probability function measured in
Nuclear Resonant Inelastic X-ray Scatterin
Chemical kinetic and photochemical data for use in stratospheric modelling
An evaluated set of rate constants and photochemical cross sections were compiled for use in modelling stratospheric processes. The data are primarily relevant to the ozone layer, and its possible perturbation by anthropogenic activities. The evaluation is current to, approximately, January, 1979
Correlational Origin of the Roton Minimum
We present compelling evidence supporting the conjecture that the origin of
the roton in Bose-condensed systems arises from strong correlations between the
constituent particles. By studying the two dimensional bosonic dipole systems a
paradigm, we find that classical molecular dynamics (MD) simulations provide a
faithful representation of the dispersion relation for a low- temperature
quantum system. The MD simulations allow one to examine the effect of coupling
strength on the formation of the roton minimum and to demonstrate that it is
always generated at a sufficiently high enough coupling. Moreover, the
classical images of the roton-roton, roton-maxon, etc. states also appear in
the MD simulation spectra as a consequence of the strong coupling.Comment: 7 pages, 4 figure
Periodic Bursts of Coherent Radio Emission from an Ultracool Dwarf
We report the detection of periodic (p = 1.96 hours) bursts of extremely
bright, 100% circularly polarized, coherent radio emission from the M9 dwarf
TVLM 513-46546. Simultaneous photometric monitoring observations have
established this periodicity to be the rotation period of the dwarf. These
bursts, which were not present in previous observations of this target, confirm
that ultracool dwarfs can generate persistent levels of broadband, coherent
radio emission, associated with the presence of kG magnetic fields in a
large-scale, stable configuration. Compact sources located at the magnetic
polar regions produce highly beamed emission generated by the electron
cyclotron maser instability, the same mechanism known to generate planetary
coherent radio emission in our solar system. The narrow beams of radiation pass
our line of sight as the dwarf rotates, producing the associated periodic
bursts. The resulting radio light curves are analogous to the periodic light
curves associated with pulsar radio emission highlighting TVLM 513-46546 as the
prototype of a new class of transient radio source.Comment: 12 pages, 3 figures, accepted for publication in ApJ Letter
Corrections to the universal behavior of the Coulomb-blockade peak splitting for quantum dots separated by a finite barrier
Building upon earlier work on the relation between the dimensionless interdot
channel conductance g and the fractional Coulomb-blockade peak splitting f for
two electrostatically equivalent dots, we calculate the leading correction that
results from an interdot tunneling barrier that is not a delta-function but,
rather, has a finite height V and a nonzero width xi and can be approximated as
parabolic near its peak. We develop a new treatment of the problem for g much
less than 1 that starts from the single-particle eigenstates for the full
coupled-dot system. The finiteness of the barrier leads to a small upward shift
of the f-versus-g curve at small values of g. The shift is a consequence of the
fact that the tunneling matrix elements vary exponentially with the energies of
the states connected. Therefore, when g is small, it can pay to tunnel to
intermediate states with single-particle energies above the barrier height V.
The correction to the zero-width behavior does not affect agreement with recent
experimental results but may be important in future experiments.Comment: Title changed from ``Non-universal...'' to ``Corrections to the
universal...'' No other changes. 10 pages, 1 RevTeX file with 2 postscript
figures included using eps
Antimatter research in Space
Two of the most compelling issues facing astrophysics and cosmology today are
to understand the nature of the dark matter that pervades the universe and to
understand the apparent absence of cosmological antimatter. For both issues,
sensitive measurements of cosmic-ray antiprotons and positrons, in a wide
energy range, are crucial. Many different mechanisms can contribute to
antiprotons and positrons production, ranging from conventional reactions up to
exotic processes like neutralino annihilation. The open problems are so
fundamental (i.e.: is the universe symmetric in matter and antimatter ?) that
experiments in this field will probably be of the greatest interest in the next
years. Here we will summarize the present situation, showing the different
hypothesis and models and the experimental measurements needed to lead to a
more established scenario.Comment: 10 pages, 7 figures, Invited talk at the 18th European Cosmic Ray
Symposium, Moscow, July 2002, submitted to Journal of Physics
Site-specific Mutants of Oncomodulin: 1H NMR and optical stopped-flow studies of the effect on the metal binding properties of an Asp59 → Glu59 substitution in the calcium-specific site
Abstract High resolution 1H nuclear magnetic resonance spectroscopy and optical stopped-flow techniques have been used to study the metal binding properties of a site-specific mutant of bacterial recombinant oncomodulin in which glutamate has replaced a liganding aspartate at position 59 in the CD calcium-binding site. In particular we have followed the replacement of calcium by lutetium in bacterial recombinant oncomodulin and D59E oncomodulin to provide a measure of the protein's preferences for metal ions of different ionic radii. The result of the Asp----Glu substitution is to make the mutant oncomodulin more similar to rat parvalbumin in terms of its relative CD- and EF-domain affinities for lutetium(III), that is to increase its affinity for metal ions with smaller ionic radii. This finding supports the original hypothesis that the presence of Asp at sequence position 59 is an important factor in the reduced preference of the CD site of oncomodulin for smaller metals such as magnesium (Williams, T. C., Corson, D. C., Sykes, B. D., and MacManus, J. P. (1987) J. Biol. Chem. 262, 6248-6256). However, our studies show that both the CD and the EF sites are affected by this single residue substitution suggesting that many factors play a role in the metal binding affinity and interaction between the two sites
- …