15 research outputs found
Metabolism-dependent bioaccumulation of uranium by Rhodosporidium toruloides isolated from the flooding water of a former uranium mine
Remediation of former uranium mining sites represents one of the biggest challenges worldwide
that have to be solved in this century. During the last years, the search of alternative
strategies involving environmentally sustainable treatments has started. Bioremediation,
the use of microorganisms to clean up polluted sites in the environment, is considered one
the best alternative. By means of culture-dependent methods, we isolated an indigenous
yeast strain, KS5 (Rhodosporidium toruloides), directly from the flooding water of a former
uranium mining site and investigated its interactions with uranium. Our results highlight
distinct adaptive mechanisms towards high uranium concentrations on the one hand, and
complex interaction mechanisms on the other. The cells of the strain KS5 exhibit high a
uranium tolerance, being able to grow at 6 mM, and also a high ability to accumulate this
radionuclide (350 mg uranium/g dry biomass, 48 h). The removal of uranium by KS5 displays
a temperature- and cell viability-dependent process, indicating that metabolic activity
could be involved. By STEM (scanning transmission electron microscopy) investigations,
we observed that uranium was removed by two mechanisms, active bioaccumulation and
inactive biosorption. This study highlights the potential of KS5 as a representative of indigenous
species within the flooding water of a former uranium mine, which may play a key role
in bioremediation of uranium contaminated sites.This work was supported by the
Bundesministerium fĂŒr Bildung und Forschung
grand nÂș 02NUK030F (TransAqua). Further support
took place by the ERDF-co-financed Grants
CGL2012-36505 and 315 CGL2014-59616R,
Ministerio de Ciencia e InnovaciĂłn, Spain
Radiation doses received by major organs at risk in children and young adolescents treated for cancer with external beam radiation therapy:a large-scale study from 12 European countries
Background:Childhood cancer survivors are at high risk of long-term iatrogenic events, in particular those treated with radiotherapy. The prediction of risk of such events is mainly based on the knowledge of the radiation dose received to healthy organs and tissues during treatment of childhood cancer diagnosed decades ago. Purpose: We aimed to set up a standardised organ dose table in order to help former patients and clinician in charge of long term follow-up clinics. Material and methods: We performed whole body dosimetric reconstruction for 2646 patients from 12 European Countries treated between 1941 and 2006 (median: 1976). Most planning were 2D or 3D, 46% of patients were treated using Cobalt 60 and 41% using linear accelerator, the median prescribed dose being 27.2 Gy (IQ1-IQ3: 17.6-40.0 Gy), A patient specific voxel-based anthropomorphic phantom with more than 200 anatomical structures or sub-structures delineated as a surrogate of each subject's anatomy was used. The radiation therapy was simulated with a treatment planning system (TPS) based on available treatment information. The radiation dose received by any organ of the body was estimated by extending the TPS dose calculation to the whole-body, by type and localisation of childhood cancer. Results: The integral dose and normal-tissue doses to most of the 23 considered organs increased between the 1950âs and the 1970âs and decreased or plateaued thereafter. Whatever the organ considered, the type of childhood cancer explained most of the variability in organ dose. The country of treatment explained only a small part of the variability. Conclusion: The detailed dose estimates provide very useful information for former patients or clinicians who have only limited knowledge about radiation therapy protocols or techniques, but who know the type and site of childhood cancer, gender, age and year of treatment. This will allow better prediction of the long-term risk of iatrogenic events and better referral to long-term follow-up clinics