935 research outputs found
Direct Detection of Non-Chiral Dark Matter
Direct detection experiments rule out fermion dark matter that is a chiral
representation of the electroweak gauge group. Non-chiral real, complex and
singlet representations, however, provide viable fermion dark matter
candidates. Although any one of these candidates will be virtually impossible
to detect at the LHC, it is shown that they may be detected at future planned
direct detection experiments. For the real case, an irreducible radiative
coupling to quarks may allow a detection. The complex case in general has an
experimentally ruled out tree-level coupling to quarks via Z-boson exchange.
However, in the case of two SU(2)_L doublets, a higher dimensional coupling to
the Higgs can suppress this coupling, and a remaining irreducible radiative
coupling may allow a detection. Singlet dark matter could be detected through a
coupling to quarks via Higgs exchange. Since all non-chiral dark matter can
have a coupling to the Higgs, at least some of its mass can be obtained from
electroweak symmetry breaking, and this mass is a useful characterization of
its direct detection cross-section.Comment: 22 pages, 3 figures. References added. Minor corrections to match
published versio
Notes on SUSY and R-Symmetry Breaking in Wess-Zumino Models
We study aspects of Wess-Zumino models related to SUSY and R-symmetry
breaking at tree-level. We present a recipe for constructing a wide class of
tree-level SUSY and R-breaking models. We also deduce a general property shared
by all tree-level SUSY breaking models that has broad application to model
building. In particular, it explains why many models of direct gauge mediation
have anomalously light gauginos (even if the R-symmetry is broken spontaneously
by an order one amount). This suggests new approaches to dynamical SUSY
breaking which can generate large enough gaugino masses.Comment: 23 pages. v2: references added, minor changes. v3: comment on
non-renormalizable case adde
On the Thermal History of Calculable Gauge Mediation
Many messenger models with realistic gaugino masses are based on meta-stable
vacua. In this work we study the thermal history of some of these models.
Analyzing R-symmetric models, we point out that while some of the known
messenger models clearly prefer the supersymmetric vacuum, there is a vast
class of models where the answer depends on the initial conditions. Along with
the vacuum at the origin, the high temperature thermal potential also possesses
a local minimum far away from the origin. This vacuum has no analog at zero
temperature. The first order phase transition from this vacuum into the
supersymmetric vacuum is parametrically suppressed, and the theory, starting
from that vacuum, is likely to evolve to the desired gauge-mediation vacuum. We
also comment on the thermal evolution of models without R-symmetry.Comment: 22 pages. V2: Comments on the SM effects added. Minor corrections.
Reference added. Valuable discussion with S. Abel, J. Jaeckel and V. Khoze
acknowledged. V3: Types of EOGM explicitly defined in the introduction.
Discussions about the phase transitions expanded. Typo corrected. Journal
versio
Two Loop R-Symmetry Breaking
We analyze two loop quantum corrections for pseudomoduli in O'Raifeartaigh
like models. We argue that R-symmetry can be spontaneously broken at two loop
in non supersymmetric vacua. We provide a basic example with this property. We
discuss on phenomenological applications.Comment: 13 pages, 5 figures, JHEP3.cls, reference adde
Light dark forces at flavor factories
SuperB experiment could represent an ideal environment to test a new U (1)
symmetry related to light dark forces candidates. A promising discovery channel
is represented by the resonant production of a boson U, followed by its decay
into lepton pairs. Beyond approximations adopted in the literature, an exact
tree level calculation of the radiative processes and corresponding QED
backgrounds is performed, including also the most important higher-order
corrections. The calculation is implemented in a release of the generator
BabaYaga@NLO useful for data analysis and interpretation. The distinct features
of U boson production are shown and the statistical significance is analysed
Thermal Evolution of the Non Supersymmetric Metastable Vacua in N=2 SU(2) SYM Softly Broken to N=1
It has been shown that four dimensional N=2 gauge theories, softly broken to
N=1 by a superpotential term, can accommodate metastable non-supersymmetric
vacua in their moduli space. We study the SU(2) theory at high temperatures in
order to determine whether a cooling universe settles in the metastable vacuum
at zero temperature. We show that the corrections to the free energy because of
the BPS dyons are such that may destroy the existence of the metastable vacuum
at high temperatures. Nevertheless we demonstrate the universe can settle in
the metastable vacuum, provided that the following two conditions are hold:
first the superpotential term is not arbitrarily small in comparison to the
strong coupling scale of the gauge theory, and second the metastable vacuum
lies in the strongly coupled region of the moduli space.Comment: 32 pages, 30 figure
Low-Energy Signals from Kinetic Mixing with a Warped Abelian Hidden Sector
We investigate the detailed phenomenology of a light Abelian hidden sector in
the Randall-Sundrum framework. Relative to other works with light hidden
sectors, the main new feature is a tower of hidden Kaluza-Klein vectors that
kinetically mix with the Standard Model photon and Z. We investigate the decay
properties of the hidden sector fields in some detail, and develop an approach
for calculating processes initiated on the ultraviolet brane of a warped space
with large injection momentum relative to the infrared scale. Using these
results, we determine the detailed bounds on the light warped hidden sector
from precision electroweak measurements and low-energy experiments. We find
viable regions of parameter space that lead to significant production rates for
several of the hidden Kaluza-Klein vectors in meson factories and fixed-target
experiments. This offers the possibility of exploring the structure of an extra
spacetime dimension with lower-energy probes.Comment: (1+32) Pages, 13 Figures. v2: JHEP version (minor modifications,
results unchanged
Fine Tuning in General Gauge Mediation
We study the fine-tuning problem in the context of general gauge mediation.
Numerical analyses toward for relaxing fine-tuning are presented. We analyse
the problem in typical three cases of the messenger scale, that is, GUT
( GeV), intermediate ( GeV), and relatively low energy
( GeV) scales. In each messenger scale, the parameter space reducing the
degree of tuning as around 10% is found. Certain ratios among gluino mass, wino
mass and soft scalar masses are favorable. It is shown that the favorable
region becomes narrow as the messenger scale becomes lower, and tachyonic
initial conditions of stop masses at the messenger scale are favored to relax
the fine-tuning problem for the relatively low energy messenger scale. Our
spectra would also be important from the viewpoint of the problem.Comment: 22 pages, 16 figures, comment adde
Supersymmetry phenomenology beyond the MSSM after 5/fb of LHC data
We briefly review the status of motivated beyond-the-MSSM phenomenology in
the light of the LHC searches to date. In particular, we discuss the conceptual
consequences of the exclusion bounds, of the hint for a Higgs boson at about
125 GeV, and of interpreting the excess of direct CP violation in the charm
sector as a signal of New Physics. We try to go into the various topics in a
compact way while providing a relatively rich list of references, with
particular attention to the most recent developments.Comment: 20 pages + refs. v2: minor modifications, published versio
Affleck-Dine dynamics and the dark sector of pangenesis
Pangenesis is the mechanism for jointly producing the visible and dark matter
asymmetries via Affleck-Dine dynamics in a baryon-symmetric universe. The
baryon-symmetric feature means that the dark asymmetry cancels the visible
baryon asymmetry and thus enforces a tight relationship between the visible and
dark matter number densities. The purpose of this paper is to analyse the
general dynamics of this scenario in more detail and to construct specific
models. After reviewing the simple symmetry structure that underpins all
baryon-symmetric models, we turn to a detailed analysis of the required
Affleck-Dine dynamics. Both gravity-mediated and gauge-mediated supersymmetry
breaking are considered, with the messenger scale left arbitrary in the latter,
and the viable regions of parameter space are determined. In the gauge-mediated
case where gravitinos are light and stable, the regime where they constitute a
small fraction of the dark matter density is identified. We discuss the
formation of Q-balls, and delineate various regimes in the parameter space of
the Affleck-Dine potential with respect to their stability or lifetime and
their decay modes. We outline the regions in which Q-ball formation and decay
is consistent with successful pangenesis. Examples of viable dark sectors are
presented, and constraints are derived from big bang nucleosynthesis, large
scale structure formation and the Bullet cluster. Collider signatures and
implications for direct dark matter detection experiments are briefly
discussed. The following would constitute evidence for pangenesis:
supersymmetry, GeV-scale dark matter mass(es) and a Z' boson with a significant
invisible width into the dark sector.Comment: 51 pages, 7 figures; v2: minor modifications, comments and references
added; v3: minor changes, matches published versio
- …
