Many messenger models with realistic gaugino masses are based on meta-stable
vacua. In this work we study the thermal history of some of these models.
Analyzing R-symmetric models, we point out that while some of the known
messenger models clearly prefer the supersymmetric vacuum, there is a vast
class of models where the answer depends on the initial conditions. Along with
the vacuum at the origin, the high temperature thermal potential also possesses
a local minimum far away from the origin. This vacuum has no analog at zero
temperature. The first order phase transition from this vacuum into the
supersymmetric vacuum is parametrically suppressed, and the theory, starting
from that vacuum, is likely to evolve to the desired gauge-mediation vacuum. We
also comment on the thermal evolution of models without R-symmetry.Comment: 22 pages. V2: Comments on the SM effects added. Minor corrections.
Reference added. Valuable discussion with S. Abel, J. Jaeckel and V. Khoze
acknowledged. V3: Types of EOGM explicitly defined in the introduction.
Discussions about the phase transitions expanded. Typo corrected. Journal
versio