1,597 research outputs found

    Interplay of internal stresses, electric stresses and surface diffusion in polymer films

    Full text link
    We investigate two destabilization mechanisms for elastic polymer films and put them into a general framework: first, instabilities due to in-plane stress and second due to an externally applied electric field normal to the film's free surface. As shown recently, polymer films are often stressed due to out-of-equilibrium fabrication processes as e.g. spin coating. Via an Asaro-Tiller-Grinfeld mechanism as known from solids, the system can decrease its energy by undulating its surface by surface diffusion of polymers and thereby relaxing stresses. On the other hand, application of an electric field is widely used experimentally to structure thin films: when the electric Maxwell surface stress overcomes surface tension and elastic restoring forces, the system undulates with a wavelength determined by the film thickness. We develop a theory taking into account both mechanisms simultaneously and discuss their interplay and the effects of the boundary conditions both at the substrate and the free surface.Comment: 14 pages, 7 figures, 1 tabl

    Lithium bis­(2-methyl­lactato)borate monohydrate

    Get PDF
    The title compound {systematic name: poly[[aqua­lithium]-μ-3,3,8,8-tetra­methyl-1,4,6,9-tetra­oxa-5λ4-borataspiro­[4.4]nonane-2,7-dione]}, [Li(C8H12BO6)(H2O)]n (LiBMLB), forms a 12-membered macrocycle, which lies across a crystallographic inversion center. The lithium cations are pseudo-tetra­hedrally coordinated by three methyl­lactate ligands and a water mol­ecule. The asymmetric units couple across crystallographic inversion centers, forming the 12-membered macrocycles. These macrocycles, in turn, cross-link through the Li+ cations, forming an infinite polymeric structure in two dimensions parallel to (101)

    Subcutaneous Immunoglobulin Replacement Therapy with Hizentra® is Safe and Effective in Children Less Than 5 Years of Age.

    Get PDF
    BACKGROUND:Hizentra® (IGSC 20%) is a 20% liquid IgG product approved for subcutaneous administration in adults and children 2 years of age and older who have primary immunodeficiency disease (PIDD). There is limited information about the use of IGSC 20 % in very young children including those less than 5 years of age. METHODS:A retrospective chart review involved 88 PIDD infants and children less than 5 years of age who received Hizentra®. RESULTS:The mean age at the start of Hizentra® was 34 months (range 2 to 59 months). IGSC 20 % was administered weekly to 86 infants (two additional infants received twice weekly and three times weekly infusions, respectively) and included an average of 63 infusions (range 6-182) for an observation period up to 45.5 months. Infusion by manual delivery occurred in 15 patients. The mean dose was 674 mg/kg/4 weeks. The mean IgG level was 942 mg/dL while on IGSC 20 %, compared to a mean trough IgG level of 794 mg/dL (p < 0.0001) during intravenous or subcutaneous IgG administration prior to IGSC 20 %. Average infusion time was 47 (range 5-120) minutes, and the median number of infusion sites was 2 (range 1-4). Local reactions were mostly mild and observed in 36/88 (41%) children. No serious adverse events were reported. A significant increase in weight percentile (7 % ± 19.2, p = 0.0012) among subjects was observed during IGSC 20% administration. The rate of serious bacterial infections was 0.067 per patient-year while receiving IGSC 20%, similar to previously reported efficacy studies. CONCLUSIONS:Hizentra® is effective in preventing infections, and is well tolerated in children less than age 5 years

    Binder chemistry – Low-calcium alkali-activated materials

    Get PDF
    Early developments in the developments of low-calcium (including calcium-free) alkali-activated binders were led by the work of Davidovits in France, as noted in Chap. 2. These materials were initially envisaged as a fire-resistant replacement for organic polymeric materials, with identification of potential applications as a possible binder for concrete production following relatively soon afterwards [1]. However, developments in the area of concrete production soon led back to more calcium-rich systems, including the hybrid Pyrament binders, leaving work based on the use of low-calcium systems predominantly aimed at high-temperature applications and other scenarios where the ceramic-like nature of clay-derived alkali-activated pastes was beneficial. Early work in this area was conducted with an almost solely commercial focus, meaning that little scientific information was made available with the exception of a conference proceedings volume [2], several scattered publications in other conferences, and an initial journal publication [3]. Academic research into the alkaline activation of metakaolin to form a binder material led to initial publications in the early 1990s [4, 5], and the first description of the formation of a strong and durable binder by alkaline activation of fly ash was published by Wastiels et al. [6-8]. With ongoing developments in fly ash activation, which offers more favourable rheology than is observed in clay-based binders, interest in low-calcium AAM concrete production was reignited, and work since that time in industry and academia has led to the development of a number of different approaches to this problem. A review of the binder chemistry of low-calcium AAM binder systems published in 2007 [9] has since received more than 350 citations in the scientific literature, indicating the high current level of interest in understanding and utilisation of these types of gels

    Computing the power of a t test

    Full text link

    Frequency Modulation

    Get PDF
    Contains reports on six research projects

    Modulation of carcinogen-metabolizing enzyme by madinah mint (Mentha spp) in rat liver

    Get PDF
    Background: The present study was undertaken to assess whether boiling water mint extract (BWME) modulates the cytochrome P450 mixed function oxidase system.Materials and methods: Male albino rats were randomly divided into two groups, comprising 12 animals each. The first group served as control, whereas the second was maintained on BWME (10 % w/v) as its sole drinking liquid for six weeks. Liver microsomal were separated and subjected for phase I and II enzymes (cytochrome P450 mixed function oxidase) analysisResults: The results obtained showed that, BWME caused a significant elevation in the activity of epoxide hydrolase (p<0.001) when compared with the control. However, glutathione S-transferase and glucuronosyl transferase activities were significantly decreased (p<0.001 and p<0.01) respectively compared with control. The mutagenic activity of N-nitrosopiperidine was lower in the minttreated hepatic microsomal compared with the controls.Conclusion: It can be concluded that BWME has the potential to suppress the activity of cytochrome enzymes involved in the bioactivation of chemical carcinogen; hence may display chemo preventive activity.Keywords: Carcinogen-PAH-Cytochrome P45

    Modulation Theory and Systems

    Get PDF
    Contains research objectives and reports on one research project
    corecore