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Abstract
We examine the impact of climate risks on the nexus of clean energy and technology stocks
using a time-varying correlation model. We find that physical and transition climate risks are
positively associated with the long-term correlation between clean energy and technology
stock indices, whereas the effect of transition risk is more robust to different sample periods
and alternative stock indices. On the contrary, the short-term correlation tends to decrease
after shocks to physical risk, since clean energy stocks react more strongly to physical risk
shocks than technology stocks.

Keywords Climate risk · Clean energy · Technology stocks · Energy transition

JEL Classification G10 · Q42 · Q54 · Q55

1 Introduction

Since climate change provably affects financial assets, investors are advised to properly assess
their portfolio exposure to climate risk in order to take effective hedging measures (Giglio
et al., 2021). Not only the energy sector (van Benthem et al., 2022) but also technology
companies can be particularly exposed to climate change due to the growing demand for
alternative energy sources, which often require technological innovations. Hence, the stocks
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of clean energy firms are highly interrelated with technologies stocks and both significantly
affect each other’s returns [e.g., Henriques and Sadorsky (2008)].

We show that the interrelation between clean energy and technology stocks is significantly
associated with both physical and transition climate risk, which we measure over a sample
period from January 2005 to June 2022 via the news-based climate risk indices recently
proposed by Bua et al. (2022). Modeling the dynamic conditional correlation between rep-
resentative U.S. stock indices of both sectors with a time-varying long-term correlation
component suggests that higher climate risks contribute to an increased long-term correla-
tion. In contrast to physical risk, the effect of transition risk is robust to different samples,
including global and European equity indices. Regressing the short-term correlation between
clean energy and technology stocks on climate risks—while controlling for oil prices, several
stock market variables, economic policy uncertainty, and business cycle variations—reveals
that physical climate risks are negatively associated with the short-term correlation. On a
return level, clean energy stocks react more strongly to physical risk innovations than tech-
nology stocks, leading to a temporary decrease in correlation. Given the interdependence of
both industries and the ensuing bidirectional return and risk spillovers, our results can help
investors understand the main determinants of the relationship between clean energy and
technology stocks.

In recent years, the growing global focus on climate change has fueled the growth of
green and climate finance as a new strand of literature (Breitenstein et al., 2021; Giglio
et al., 2021). The role of climate-related risks in financial markets is attracting considerable
attention, following the increasingly frequent actions taken by governments tomitigate global
warming (Breitenstein et al., 2021). A new stream in the literature on climate finance aims
to answer research questions in light of the emerging climate crisis, providing evidence
that climate risks affect economic growth [e.g., Stern and Stern (2007)], asset prices [e.g.,
Painter (2020), Baldauf et al. (2020), Bolton and Kacperczyk (2021), Bua et al. (2022)],
firms’ profitability [e.g., Addoum et al. (2020)], assets’ hedging and safe-haven abilities
[e.g., Cepni et al. (2022)], firms’ investment decisions [e.g., Engle et al. (2020)], and other
economic variables. Climate risks have the potential to redefine the relationships of various
assets. For example, Flori et al. (2021) studyhowclimate variables influence the co-movement
of commodity prices and, thus, impact financial stability.

The relation of clean energy and technology stocksmight be particularly influenced by cli-
mate risks. In line with empirical findings, the equilibrium model of Barnett (2023) suggests
that climate change increases the amount of clean (i.e., low-carbon) input used in production.
Given the immense energy consumption in production and the carbon intensity of conven-
tional energy sources, this is of particular relevance for the clean energy sector and related
technology firms. With increasing climate risks, investors could shift their capital into clean
energy stocks, as they are expected to benefit from the transition to green energy. Similarly,
technology companies may attract investors in times of high climate risk, given their impor-
tance for the energy transition and their low carbon emissions. The transition to cleaner energy
production and, in general, towards a less carbon-intensive economy requires technological
advances in several areas, such as innovation in power generation, smart grid development,
carbon removal solutions, energy storage, and battery technologies (Popp, 2011). Hence,
the performance of alternative energy companies largely depends on the success or fail-
ure of these technologies, providing a possible explanation for the strong co-movement of
clean energy and technology stock prices. Existing studies argue that investors’ perceptions
of clean energy and technology stocks are similar (Henriques and Sadorsky, 2008; Kumar
et al., 2012; Sadorsky, 2012). With increasing climate risks, clean energy and technology
markets could grow even closer together in terms of collaboration, joint revenue streams,
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shared input resources, human capital, and risk factors. If risks arising from climate change
are relevant to the relationship of clean energy and technology companies, investors should
carefully consider this for investment decisions and portfolio selection.

Our study contributes to two research streams. First, we add to the general literature on
climate finance and show that climate risk shocks may not only affect equity returns [e.g.,
Giglio et al. (2021)] and volatility (Meinerding et al., 2023) but can also drive the return
connectedness of different industries. This can have important implications for portfolio
diversification and climate risk hedging.We further underline the importance of disentangling
physical and transition climate risk, as we find differing effects on the connection of clean
energy and technology stocks, depending on the time horizon. Second, we introduce a novel
discussion for the literature on the interrelation between the prices for clean energy stocks
and technology stocks by explicitly accounting for the role of climate change risks. Most
studies investigating the nexus of clean energy and technology stocks focus on the role of
oil prices and other fossil fuels, although clean energy stocks might have more in common
with technology companies than with fossil-fuel-based energy companies (Zhang and Du,
2017). However, the literature lacks evidence on whether climate-related risks affect the
relationship between these two sectors. The identified effects of changes in oil price on clean
energy stocks may be mainly due to climate risks which might be implicitly reflected by the
price of oil. Hence, we examine whether climate risks are expected to further tighten the
stocks’ interrelation of both markets. Consistent with existing studies, the oil price appears
to only weakly affect the correlation of the indices of clean energy and technology stocks.
Instead, we are the first to show that—relative to oil prices—climate risk is of first-order
importance for the stock return nexus of both sectors.

The remainder of this paper is organized as follows. Section2 provides a review of the
literature on the link between technology and clean energy stocks. Section3 describes the cli-
mate risk indicators, the technology and clean energy stock indices, as well as the correlation
measures. Section4 discusses the main results on the association of physical and transition
climate risks with the long- and short-term correlation between clean energy and technology
stock indices. Section5 concludes the paper.

2 Related studies on the technology and clean energy nexus

Previous studies have analyzed the interconnection of clean energy and technology stocks
using various methodologies and samples. Among others, Sadorsky (2012) documents the
strong positive correlation between stock indices of both industries. The positive correlation
implies a bidirectional transfer of shocks to returns and volatility, as numerous studies sug-
gest. Henriques and Sadorsky (2008) find that clean energy stock prices are positively and
significantly affected by price shocks to technology stocks and vice versa. This finding is
confirmed by Kumar et al. (2012), Zhang and Du (2017), Kocaarslan and Soytas (2019), and
Maghyereh et al. (2019), among others. Also, volatility transmits positively between the two
markets (Sadorsky, 2012; Maghyereh et al., 2019). These results generally hold for multiple
time horizons. Shocks to one market can have a significant and persistent impact on the other
market over severalmonths [e.g., Henriques and Sadorsky (2008), Kumar et al. (2012), Zhang
and Du (2017)]. In contrast, some studies obtain differing results regarding the time horizon.
Unlike their short-term results, Kocaarslan and Soytas (2019) find that negative technology
stock returns have a more pronounced long-term impact on clean energy stocks than positive
returns. Although the authors observe the same asymmetry in the short-term effects of clean
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energy stock returns on technology stocks, this finding reverses in the long run, where posi-
tive returns in clean energy stocks exert a stronger impact on technology stocks than negative
returns. Bondia et al. (2016) only documents short-term Granger causality from technology
to clean energy stocks but cannot confirm this result for longer horizons. Likewise, the results
of Maghyereh et al. (2019) depend on the time scale. This underscores the importance of
disentangling our correlation analysis into a short-term and long-term setting.

Except for Sadorsky (2012) and Maghyereh et al. (2019), existing studies do not explic-
itly focus on modeling the correlation between clean energy and technology stocks. Most
studies analyze return and risk spillovers between both industries, often in relation to oil
prices. However, the literature lacks evidence on the drivers of this strong interconnection.
One could argue that the increase in the costs of conventional energy sources due to the
rising prices of fossil fuels stimulates investment in technology-based clean energy firms
(Henriques and Sadorsky, 2008; Kumar et al., 2012). If so, a stronger association of clean
energy and technology stocksmight bemotivated by oil pricemovements (Saeed et al., 2021).
Although some studies empirically confirm a significant relation between oil prices and stock
prices of clean energy companies [e.g., Henriques and Sadorsky (2008), Kumar et al. (2012),
Kocaarslan and Soytas (2019), Maghyereh et al. (2019)), most published research finds that
compared to the effect of technology stocks, fossil fuel prices only play a minor role for
the performance of clean energy stocks. Compared to conventional energy companies or oil
prices, technology stocks appear to have a much closer connection to clean energy stocks
in terms of correlation (Sadorsky, 2012; Zhang and Du, 2017; Maghyereh et al., 2019), the
impact of changes and shocks on previous prices (Henriques and Sadorsky, 2008; Sun et al.,
2019), and volatility spillovers (Qu et al., 2021). Lyocsa and Todorova (2023) find that the
variation in technology prices is more informative for subsequent volatility in clean energy
stocks than oil price variations. Also, Ferrer et al. (2018) cannot identify oil prices as a crucial
determinant of clean energy stock returns in the short or long run. Inchauspe et al. (2015)
and Reboredo et al. (2017) find a greater importance of oil prices for clean energy stocks in
the years of the global financial crisis. However, it is likely that this result is subject to the
so-called “financialization” of commodity markets, during which the overall co-movement
of commodity and stock markets increased substantially [e.g., Büyükşahin and Robe (2014),
Adams and Glück (2015), Dudda et al. (2022)]. Recent findings suggest that oil and other
commodities have already decoupled from stock markets in recent years [e.g., Aromi and
Clements (2019), Adams et al. (2020)].

In general, the results from the literature indicate that technology stock prices are more
closely related to clean energy stocks than oil prices, suggesting that oil prices also contribute
little to the relationship between clean energy and technology stocks. Fahmy (2022) finds
that the prices of technology stocks superseded oil as one of the main determinants of clean
energy stock prices after the Paris agreement. According to Fahmy (2022), this suggests that
climate-related events raise the climate risk awareness of investors and encourage a shift
in preferences toward green investments. Surprisingly, the literature did not pay attention
to the role of climate-related risk with respect to the nexus of clean energy and technology
stocks. Like Bondia et al. (2016), we argue that increasing oil prices are not the primary
growth driver for the alternative energy sector and that the transition to cleaner energy is
driven in large part by environmental concerns. Therefore, we claim that not changing oil
prices but climate risk should mainly contribute to the association of technology and clean
energy stocks. Our study adds to the results of Fahmy (2022) by explicitly focusing on the
influence of climate-related risks for the time-varying relationship of both sectors. Thereby,
we also expand on the results of Sadorsky (2012) andMaghyereh et al. (2019), who compare
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the dynamic conditional correlations of clean energy and technology stock indices to their
correlation with the returns of crude oil futures contracts.

3 Data andmethodology

3.1 Climate risk measures

The literature on climate finance emphasizes the need to dissociate physical and transition
risks due to their potentially disparate effects on financial markets [see, e.g., Engle et al.
(2020), Faccini et al. (2023), Giglio et al. (2021), Bua et al. (2022), Cepni et al. (2022)].
According to the Task Force on Climate-related Financial Disclosures, created by the Finan-
cial StabilityBoard,physical climate risk arises fromacute extremeweather events, e.g. floods
and heat waves, or chronic changes in climate patterns, such as rising sea levels through a
permanent increase in global temperature. On the other hand, transition risk emanates from
the shift towards a low-carbon economy, typically induced by regulatory, technological, and
market changes, or changes in public preferences (TCFD, 2017; Breitenstein et al., 2022).
To account for potential effects of both types of climate risks on the correlation of clean
energy and technology stock markets, we use daily data of physical (PRI) and transition
(TRI) climate risk indices from January 03, 2005, through June 30, 2022.1 Both indicators
were developed by Bua et al. (2022) to gauge the magnitude of shocks to the respective
type of climate risk. Consistent with Engle et al. (2020), the risk indices are based on a
textual analysis approach of articles published by Reuters News, a widely used news source
by financial investors to update investment decisions. Measures are constructed based on
the assumption that a growing physical or transition risk increases the density of news that
covers associated topics. Starting from a list of scientific texts on climate change published
by government authorities and other institutions, the authors first compile content-specific
physical and transition risk documents. They compare these documents with the news corpus
using the cosine similarity technique, as in Engle et al. (2020), to generate a series of phys-
ical and transition concerns. The obtained series represent the portion of the news coverage
dedicated to each type of climate risk. To capture innovations in climate risk, the authors fit
an autoregressive model of order one to each of the two concern series and finally build the
PRI and TRI from its residuals.

PRI and TRI aim to capture the distinct characteristics of each type of climate risk, unlike
other studies that mainly capture subdimensions of physical and transition risk [e.g., Ardia
et al. (2022), Faccini et al. (2023), Pankratz et al. (2023)] or consider climate change as a
unique risk factor (Engle et al., 2020; Gavriilidis, 2021). Furthermore, PRI and TRI measure
climate risks at a daily frequency, while alternative climate risk indicators are calculated
monthly. We compare our results for PRI and TRI against the Wall Street Journal (WSJ)
and the Crimson Hexagon negative sentiment (CHNEG) climate change news indices used
in Engle et al. (2020), as well as the climate policy uncertainty (CPU) index of Gavriilidis
(2021).

1 We are not concerned that the availability of the data on the climate risk indices, which restricts our sample
to begin in 2005, poses a problem for our research question. As Giglio et al. (2021) argue, climate risk has just
recently gained a large amount of attention from investors and, therefore, has been priced in financial markets
only in the near past, as indicated by the related empirical literature. For example, Bua et al. (2022) find an
emerging climate risk premium for European stocks since 2015 but not before. Also, compared to recent years,
the need for an energy transition and, thus, technology-based clean energy firms was generally not deemed as
urgent many years ago.
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3.2 Technology and clean energy returns

Over the sample period set by the availability of climate risk data, we obtain daily closing
prices from Refinitiv Datastream for the NYSE Arca Technology 100 (PSE) and the Wilder-
Hill Clean Energy (ECO) indices as representative market indices for U.S.-listed technology
and clean energy stocks.2 The PSE is a price-weighted index that reflects the stock per-
formance of 100 companies that are associated with innovative technologies in different
industries. ECO tracks the performance of the stocks of clean energy companies that are
expected to benefit from the decarbonization of the economy by gradually replacing fossil
fuels and nuclear energy with cleaner energy solutions.3

Figure1 shows the development of the stock and climate risk indices during the sample
period. Table 1 provides summary statistics. The minimum and maximum daily log returns,
the standard deviation, and kurtosis indicate that ECO is more volatile than PSE and that
extreme price movements are more vigorous and occur more frequently, which is also visible
in Fig. 1. Ljung-Box test statistics detect autocorrelation in the returns and squared returns.
Consistently, ARCH effects are present in both return series according to the Lagrange-
Multiplier test of Engle (1982). Thus, it is reasonable to filter stock returns with a GARCH
model before estimating dynamic conditional correlations. Daily PRI and TRI are strongly
skewed to the right, implying that climate risk can experience unexpected sharp increases on
a daily level. Monthly PRI and TRI appear less erratic andmove within a narrower range with
much lower extreme values since standard deviation, skewness, and kurtosis are substantially
reduced by monthly averaging, which is also apparent in Fig. 1. Although the daily indices
seem to carry higher noise than their monthly averages, they might be better at capturing the
events that lead to extreme surges of climate risk. Shocks and squared shocks to physical
and transition climate risk exhibit significant autocorrelation. Only for monthly averages,
the Lagrange multiplier test cannot identify ARCH effects. The Jarque–Bera test reveals that
only the monthly PRI is normally distributed among all variables. The ADF and KPSS tests
indicate that the daily log returns of the stock indices are stationary, while the KPSS test
detects a unit root in the monthly averages of PRI and TRI. The test results on the stationarity
of the daily PRI and TRI time series are contradictory.

3.3 Correlationmeasures

Given the long-term characteristics [e.g., Bansal et al. (2016)] on the one hand and also the
more recent short-term financial relevance of climate risks on the other hand [e.g., Bua et
al. (2022)], we assess the effect of physical and transition risks on both the long-term cor-
relation between the returns of clean energy and technology stock indices and their daily
correlation dynamics. We estimate daily dynamic conditional correlations using the standard

2 We use U.S. stock market indices in our main empirical analysis since a representative clean energy stock
market index does not exist for European companies. Although PRI and TRI are built fromReuters newswith a
European regional focus, they convey information on climate risks that is not exclusively relevant to European
firms. The news articles that led to the largest shocks in climate risk are mostly of global relevance, as shown
in Bua et al. (2022). They cover topics such as melting glaciers, permafrost thawing ocean acidification, sea
level rise, Kyoto Protocol-related news, and even U.S. emission regulations. Although some news may seem
only locally relevant, they directly affect U.S. firms operating in Europe. We also conduct an analysis with
European technology and global clean energy stock indices and discuss the robustness of our U.S.-findings in
the results section.
3 Both stock indices cover a different set of firms. We identified merely two stocks during the past 10 years
that were held by both the Invesco WilderHill Clean Energy ETF and the HighMark NYSE Arca Tech 100
Index Fund.
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Fig. 1 Cumulative log returns of the NYSE Arca Technology 100 (PSE) and the WilderHill Clean Energy
(ECO) stock indices as well as daily values and monthly averages of the physical (PRI) and the transition risk
(TRI) indices

DCC-GARCH model of Engle (2002). To model long-term correlations, we follow Colacito
et al. (2011) and Conrad et al. (2014), who introduce a time-varying long-term correla-
tion component to the original DCC-GARCH model using mixed data sampling (MIDAS)
regressions.

Following Engle (2002) and Colacito et al. (2011), we consider a vector of daily returns
rt = (rT ,t , rE,t )

′ of technology (T ) and clean energy (E) stocks. We define E
[
rt | �t−1

] =
μ = (μT , μE )′ and the residuals εt = rt − μ = (εT ,t , εE,t )

′, where �t−1 is a sigma
algebra that contains the information set available up to t − 1. The conditional covariance
of the process is then defined as Ht = V

[
εt | �t−1

] = Dt Rt Dt with Rt = E
[
ηtη

′
t

]
and

Dt = diag
(√

hT ,t ,
√

hE,t
)
. Then, the standardized residuals are ηt = D−1

t εt = (ηT ,t , ηE,t )
′

with ηt ∼ N (0, I2). We define the univariate conditional variance processes hT ,t and hE,t by
the GJR-GARCH(1, 1) model (Glosten et al., 1993) using a Student-t distribution for i.i.d.
errors. The dynamics of the DCC are then incorporated into a quasi-correlation matrix Qt

with the elements qi j,t for i, j ∈ [T , E]:

qi j,t = ρ̄i j,τ (1 − α − β) + αηi,t−1η j,t−1 + βqi j,t−1. (1)

123



Annals of Operations Research

Ta
bl
e
1

Sa
m
pl
e
st
at
is
tic
s
of

st
oc
k
an
d
cl
im

at
e
ri
sk

in
di
ce
s

St
oc
k
m
ar
ke
ti
nd
ic
es

C
lim

at
e
ri
sk

in
di
ce
s

D
ai
ly

lo
g
re
tu
rn
s

D
ai
ly

M
on
th
ly

PS
E

E
C
O

PR
I

T
R
I

PR
I

T
R
I

M
ea
n

0.
03
8

−0
.0
12

−0
.0
00

0.
00

0
0.
00

6
0.
00

5

M
in

−1
2.
73

6
−1

6.
23

9
−6

.8
31

−8
.1
48

−2
.0
62

−2
.1
89

M
ax

10
.0
99

14
.5
19

12
.2
51

19
.0
73

2.
28

9
2.
86

2

SD
1.
28

3
2.
18

9
2.
11

4
2.
38

5
0.
78

2
0.
88

6

Sk
ew

n.
−0

.4
44

−0
.3
88

0.
73

9
1.
03

9
−0

.0
42

0.
45

3

E
x.
K
ur
t.

8.
36

3
5.
33

1
1.
46

7
4.
22

8
−0

.0
91

−0
.0
10

J.
B
.(

×1
0−

3
)

13
.4
49

**
*

5.
51

9*
**

0.
82

4*
**

4.
21

8*
**

0.
00

0
0.
00

7*
*

A
D
F

−1
5.
99

2*
**

−1
5.
24

8*
**

−1
0.
85

9*
**

−1
0.
07

9*
**

−3
.1
49

*
−2

.9
17

K
PS

S
0.
09

2
0.
17

8
4.
91

7*
**

8.
09

6*
**

1.
06

7*
**

1.
52

6*
**

L
B

(2
0)

14
2.
71

9*
**

69
.1
07

**
*

11
40

.6
48

**
*

11
64

.3
79

**
*

38
1.
38

5*
**

79
5.
41

8*
**

L
B
2
(2
0)

58
16

.8
18

**
*

58
31

.1
73

**
*

24
0.
33

1*
**

28
2.
29

6*
**

55
.5
30

**
*

11
3.
29

7*
**

A
R
C
H

(2
0)

34
8.
55

2*
**

33
1.
16

3*
**

47
6.
11

1*
**

86
5.
90

9*
**

2.
59

2
2.
15

0

T
hi
s
ta
bl
e
pr
es
en
ts
su
m
m
ar
y
st
at
is
tic
s
fo
r
10
0×

da
ily

lo
g
re
tu
rn
s
of

th
e
N
Y
SE

A
rc
a
Te
ch
no
lo
gy

10
0
(P
SE

)
an
d
th
e
W
ild

er
H
ill

C
le
an

E
ne
rg
y
(E
C
O
)
st
oc
k
in
di
ce
s
as

w
el
l
as

da
ily

an
d
m
on
th
ly

va
lu
es

of
ph
ys
ic
al

(P
R
I)
an
d
tr
an
si
tio

n
(T
R
I)
cl
im

at
e
ri
sk

in
di
ce
s
(×

10
0)

ov
er

th
e
fu
ll
sa
m
pl
e
pe
ri
od

fr
om

Ja
nu

ar
y
20

05
to

Ju
ne

20
22

.
M
on

th
ly

PR
I
an
d

T
R
I
ar
e
ag
gr
eg
at
ed

by
av
er
ag
in
g
da
ily

va
lu
es

w
ith

in
a
m
on

th
.D

ai
ly

(m
on

th
ly
)
se
ri
es

co
ve
r
45

64
(2
08

)
ob

se
rv
at
io
ns
.W

e
re
po

rt
te
st
st
at
is
tic

s
of

th
e
Ja
rq
ue
–B

er
a
(J
.B
.)
te
st
fo
r

no
rm

al
ity
,t
he

A
ug
m
en
te
d
D
ic
ke
y–
Fu

lle
r(
A
D
F)

an
d
K
w
ia
tk
ow

sk
i–
Ph

ill
ip
s–
Sc
hm

id
t–
Sh

in
(K

PS
S)

te
st
s
fo
rs
ta
tio

na
ri
ty
,t
he

L
ju
ng
-B
ox

te
st
fo
ra
ut
o-
co
rr
el
at
io
n
in
th
e
re
tu
rn

(L
B
)

an
d
sq
ua
re
d
re
tu
rn

se
ri
es

(L
B
2
)u

p
to

20
la
gs
,a
nd

th
e
E
ng

le
(1
98

2)
L
ag
ra
ng
e-
M
ul
tip

lie
r
te
st
fo
rA

R
C
H
ef
fe
ct
s
up

to
20

la
gs
.A

st
er
is
ks

de
no
te
th
e
re
je
ct
io
n
of

th
e
nu
ll
hy
po
th
es
is

at
th
e
**

*1
,*
*5

,a
nd

*1
0%

le
ve
l,
re
sp
ec
tiv

el
y

123



Annals of Operations Research

Following Colacito et al. (2011) and Conrad et al. (2014), we allow monthly time variation
in the long-term correlation between technology and clean energy firms described by ρ̄i j,τ .4

We assume that the monthly-moving long-term correlation component is driven by climate
risk. To ensure ρ̄i j,τ ∈ [−1, 1], we apply the Fisher-z transformation and define:

ρ̄i j,τ = exp
(
2zi j,τ

) − 1

exp
(
2zi j,τ

) + 1
(2)

with

zi j,τ = m + θ

K∑

k=1

ϕk (ω) Xτ−k and ϕk(ω) =
( k

K

)ω−1

∑K
s=1

( s
K

)ω−1 , (3)

where zi j,τ is driven by an exogenous variable Xτ available at monthly frequency. We
choose the beta polynomial ϕk(ω) as the MIDAS weighting scheme. The beta function
assigns weights to each of the past K monthly observations of the long-term correlation
driver Xτ . Depending onω, it can produce various weighting schemes such as equal weights,
slowly or rapidly decreasing weights, hump-shaped weights, and other forms (Ghysels et al.,
2007). In our case, the exogenous variable Xτ is given by monthly averages of TRI or PRI.
Therefore, the parameter θ represents the overall impact of the weighted lagged monthly
observations of the climate risk indicators on the long-term correlation between the energy
and technology stock indices. Like Colacito et al. (2011), we also consider lagged monthly
realized correlations (RC) as explanatory variables for the long-term correlation.

Finally, the conditional correlation matrix is Rt = diag(Qt )
− 1

2 Qt diag(Qt )
− 1

2 with its
elements ρi j,t . We estimate the parameters using a two-stage Quasi Maximum-Likelihood
estimation. In the first step, we estimate the univariate variance processes with GJR-GARCH
followed by the synchronization of standardized residuals and the parameter estimation of
the DCC-MIDAS model.

To test the robustness of our results regarding the choice of the correlation measure, we
further use simple rolling window correlations (RWC) as a parameter-free alternative to
estimate daily time-varying correlations.

4 Results

4.1 The impact of climate risk on long-term correlation

The estimated DCC parameters are presented in Table 2. Figure2 shows the estimated daily
correlations together with the monthly-moving long-term correlation component. The cor-
relation process is rather persistent, with a high value for β and a value close to one for the
sum of α and β for all DCC model variants. The daily correlation ranges between 0.1124
and 0.9274. The standard DCC indicates that the average long-term correlation is 0.7044,
whereas the long-term correlation component modeled with PRI (TRI) fluctuates between
0.4623 and 0.8316 (0.5087 and 0.8664). The estimated long-term correlation driven by PRI
and TRI is close to 0.8 at the beginning of our sample and decreases afterward to its lowest
level of around 0.5 between the middle of 2016 and the beginning of 2017. Since then, both
modeled long-term correlation series have shown an upward trend, increasing again to a

4 In the original DCC specification of Engle (2002), the long-term correlation is given by the constant uncon-
ditional expectation of qi j ,t .
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Table 2 Results of DCC and DCC-MIDAS estimations for daily PSE and ECO log returns

Parameter DCC DCC-MIDAS
RC PRI TRI

α 0.0481*** 0.0474*** 0.0487*** 0.0489***

β 0.9459*** 0.9489*** 0.9424*** 0.9413***

m 0.9579*** 2.9186 0.9633*** 0.9772***

θ −2.7304 51.0371* 31.9936**

ω 1.0000 1.0000 7.4238

LL 1565.38 1565.98 1570.48 1569.54

This table shows the estimation results of the DCC and DCC-MIDAS equations for daily log returns of the
NYSE Arca Technology 100 (PSE) and the WilderHill Clean Energy (ECO) stock index. The conditional
correlation matrix Rt = diag(Qt )

−1/2Qtdiag(Qt )
−1/2 is calculated from the quasi-correlation matrix Qt =

[qi j,t ]2,2i, j=1, where i and j denote the clean energy and technology stock indices. The correlation’s daily
(short-term) dynamics are estimated from: qi j ,t = ρ̄i j ,τ (1 − α − β) + αηi,t−1η j,t−1 + βqi j,t−1, where
ηi,t are standardized GJR-GARCH(1,1) residuals. While ρ̄i j ,τ is interpreted as the constant unconditional
expectation of qi j,t in the original DCC specification of Engle (2002), ρ̄i j,τ describes the monthly-moving
long-term correlation component in the DCC-MIDAS model (Colacito et al., 2011; Conrad et al., 2014)
driven by a monthly-available variable Xτ , where ρ̄i j ,τ = [exp (

2zi j,τ
) − 1]/[exp (

2zi j,τ
) + 1], zi j,τ =

m + θ
∑K

k=1 ϕk (ω) Xτ−k , and the beta polynomial ϕk (ω) = (k/K )ω−1/
∑K

s=1(s/K )ω−1. The regression
is based on synchronized return series from 01–Feb–2008 to 30–June–2022 (3760 observations). Asterisks
∗∗∗, ∗∗, ∗ indicate the significance of the estimated parameters at 1, 5, and 10%, respectively. LL is the log-
likelihood of the underlying DCC model (not including the univariate volatility process). The DCC-MIDAS
is estimated based on a lag length of K = 36 month for the long-term correlation driver (Xτ ), which is
either given by Realized Correlation (RC), or physical (PRI) resp. transition climate risk (TRI) as explanatory
variables

level of 0.7 by the end of our sample in June 2022. Thus, similar to the findings of Fahmy
(2022), we observe an increased correlation in the period after the Paris Agreement entered
into force on November 4, 2017. According to the parameter estimates for θ , both types
of climate risk are positively associated with the long-term correlation between technology
and clean energy firms at the 5 and 10% levels, respectively.5 An increase in physical or
transition climate risk, hence, leads to a higher correlation between US technology and clean
energy stocks in the long term.6 In contrast, we find that realized correlations do not drive
the long-term correlation.

For the more general climate risk index of Engle et al. (2020) (WSJ), which does not
distinguish between physical and transition risk, we find a positive but statistically insignifi-
cant effect on the long-term correlation of energy and technology stocks using the available
index data until June 2017. Using their measure, which only covers negative news about
climate change (CHNEG), available from June 2008 to May 2018, yields a significant and
positive association with the correlation. During both periods over which data on the indices
from Engle et al. (2020) is available, only TRI shows a statistically significant link to the
correlation of technology and clean energy stocks, indicating the importance of disentan-
gling climate risk into its physical and transition risk components. Similarly, we obtain a
positive but insignificant parameter estimate for the effect of the CPU index constructed in

5 Our findings remain qualitatively unchanged for different lags of the DCC-MIDAS ranging from 24 up to
60 months.
6 Unlike climate risks, monthly oil returns are not a significant determinant of the long-term correlation
between clean energy and technology stocks, as suggested by the DCC-MIDAS. This result holds for the spot
and front-month futures prices of WTI crude oil.
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Fig. 2 Estimated dynamic conditional correlation between daily log-returns of the NYSE Arca Technology
100 (PSE) and the WilderHill Clean Energy (ECO) stock indices with climate risk as a driver of the monthly-
moving long-term correlation component. The MIDAS-term of the DCC model includes K = 36 lags of
monthly observations of either physical (PRI) or transition risk (TRI)

Gavriilidis (2021), which aims to represent the uncertainty of climate policy rather than the
risk of climate change.7

Since PRI and TRI are created from news with a European focus, we also estimate the
correlation between ECO and European technology stocks (EURO STOXX Technology),
the PSE and global clean energy stock markets (S&P Global Clean Energy), and between
European technology stocks and the global clean energy index. Consistent with the results of
the U.S. indices presented in Table 2, we find that the effect of TRI on long-term correlation
for all pairs of energy and technology indices remains positive and significant using lags of
24 to 60 months for the MIDAS term. The effect of PRI is less robust, as we do not find
significant links of PRI to the correlation among all index pairs and lags. More specifically,
we can determine PRI as a significant driver of the long-term correlation between ECO and
European technology stocks only when using a lag length of K = 48 months but not for a
lag length of 24, 36, or 60 months. We obtain the same finding for the correlation of PSE
with global clean energy stocks. The positive effect of PRI on the long-term correlation

7 DCC-MIDAS parameter estimates for CPU, WSJ, and CHNEG as well as PRI and TRI over equivalent
sample periods are presented in Table 6.
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of European technology stocks and global clean energy stocks remains significant, except
for 24 lags. In all model variants, the influence of TRI and PRI on correlation is estimated
to be strongly positive, though the parameter estimates are smaller than for the correlation
between ECO and PSE. This is due to the average long-term correlation between European
technology and global clean energy stocks and their correlation to the U.S. indices ranging
between 0.4159 and 0.5166 according to the standard DCC model and, thereby, being lower
than the correlation between ECO and PSE.8

In sum, our findings indicate that the long-term correlation component is primarily driven
by transition risk. This is an intuitivefinding. In the long term, changing consumer preferences
toward climate-friendly energy solutions, regulatory changes, or, most importantly, related
technological advances should play amore important role than physical climate risk events in
driving the two sectors closer together. The literature on climate finance already documents
that transition risks, such as uncertainty about environmental policy, are priced in equity
markets (Giglio et al., 2021; Hsu et al., 2023). The results of Engle et al. (2020) suggest
a negative relationship between firms’ exposure to regulatory climate risk and their stock
returns. This might be particularly true for clean energy and related technology companies
with negative exposure to regulatory climate risk, meaning that both should benefit from
stricter regulations. The results of Faccini et al. (2023) indicate that stock prices are mainly
affected by transition risks, especially those related to climate policy, while physical risks
appear less important. This conclusion is, however, not confirmed by Bua et al. (2022), who
use more comprehensive measures of physical and transition risk. Their study indicates the
existence of both a transition and a physical risk premium in recent years. Ardia et al. (2022)
finds that green firms’ stock prices appear to rise in response to shocks from transition and
physical climate risk. Similarly, our results suggest that, next to transition risks, also physical
climate risks might positively affect the long-term interrelation between clean energy and
technology stocks (which can be generally considered as “green”), especially inU.S.markets.
This could be due to investors adjusting their view on transition risks, e.g., in anticipation
of regulatory changes, based on an increased accumulation of acute extreme weather events
(Alekseev et al., 2022). For example, Choi et al. (2020) show that the carbon intensity
of firms negatively relates to their stock performance during periods with unusually warm
temperatures where investors might be particularly aware of global warming. We add to the
climate finance literature by showing that the long-term return connectedness of stocks with
a negative climate risk exposure can also tighten with rising physical and transition climate
risk. In the next section, we focus on the dynamics of short-term correlation and whether
daily variations in climate risk are helpful to explain them.

4.2 Climate risk and daily correlation dynamics

To assess the impact of climate risks on the daily correlation dynamics of clean energy
and technology stocks, we take the daily conditional correlation from either the standard
DCC model without a moving long-term component or a simple rolling window correlation
estimated over 22 lags (RWC) and regress it on lagged daily values of TRI and PRI.9 Our

8 DCC-MIDAS parameter estimates for a lag length of K = 36 months can be found in Table 6.
9 The correlation between technology and clean energy stocks is stationary according to an ADF test with a
p-value below 1%.
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regression model with N covariates reads as follows:

DCCt = a0 + b1 (Lk) DCCt + b2 (Lk) P RIt + b3 (Lk) T RIt +
N∑

j=4

b j (Lk) X jt + ut ,(4)

where L denotes the lagoperator: Lk xt = xt−k andb j (Lk) = (
b j1L1 + b j2L2 + · · · + b jk Lk

)
,

j = 1, ..., N . In addition to lagged correlation, PRI and TRI, we include additional controls,
X jt , j = 4, ..., N , which potentially affect daily correlation. For robustness, we replace the
correlation measure DCCt with RWCt estimated from daily returns between trading day
t − 22 and t − 1.

We test the association of PRI and TRI on the correlation over the following three trading
days, i.e., we set k = 3. Since the correlation at time t is estimated based on returns up to t −1,
the model also captures the contemporaneous effect of climate risk shocks on stock returns.
We account for the discussion in the literature on the effects of oil prices on clean energy
stocks by including daily WTI crude oil spot returns as a control variable.10 Previous studies
further document that clean energy stock prices are affected by market volatility and policy
uncertainty [e.g., Ferrer et al. (2018), Lundgren et al. (2018), Uddin et al. (2019), Yahya
et al. (2021)]. We use the Cboe Volatility Index (VIX) and the change in Economic Policy
Uncertainty (EPU) to control for these effects. Based on option prices, the VIX captures
the 30-day implied volatility in the S&P 500 index and is recognized to signal the level
of fear or stress in the stock market. EPU is measured by a news-based index of Baker
et al. (2016) and is already adopted by various studies [e.g., Pástor and Veronesi (2013),
Brogaard and Detzel (2015)]. Because clean energy and technology stocks as well as their
connectedness can be sensitive to business cycle fluctuations [see Kumar et al. (2012), Ferrer
et al. (2018), Kocaarslan and Soytas (2019), Fahmy (2022)], we also include the Aruoba-
Diebold-Scotti Business Conditions Index [ADS, Aruoba et al. (2009)]. Furthermore, we
control for autoregression by lagged correlation, returns of the S&P500 index, changes in
the 3-month U.S. Treasury Bill rate, as well as for calendar effects for January and the day
of the week. All time series are retrieved from Refinitiv Datastream. We use HAC standard
errors with five lags to adjust for possible heteroskedasticity. The results for the U.S. stock
indices are provided in Table 3.

Contrary to the long-term dynamics of the correlation between technology and clean
energy companies, the daily correlation is influenced by physical climate risk rather than
transition risk. The relation of PRI to the short-term correlation remains statistically sig-
nificant after controlling for financial and economic indicators. In our sample, physical
climate risks are negatively associated with the correlation over the following trading
days. A one standard deviation shock to PRI decreases the next day’s correlation by
(−0.0610×0.0211) = −0.0013 points as estimated by the DCC.11 Thus, periods of physical
risk tend to decrease the short-term correlation.12 Based on adding quantile dummies and

10 We also consider WTI front-month futures returns, which does not change our results.
11 We also run our regression model for percentage changes of correlation. The results are presented in Table
7 and remain qualitatively the same for lag one. For example, a one standard deviation shock in PRI reduces
the next day’s DCC by about 0.26% per day. For longer lags, the parameters are still negative, but mostly
insignificant. However, we find only a weakly significant coefficient for PRI lagged by three trading days
when the correlation is estimated over a rolling window. Shorter lags are insignificant.
12 For the correlation of European technology and global clean energy stockmarkets, signs for the coefficients
of PRI (mainly negative) and TRI (mainly positive) remain the same in our regression model. However, in
contrast to the U.S. indices, we do not find consistently significant effects of PRI on DCC and RWC. Instead,
three-day-lagged TRI positively affects RWC, which is, however, not confirmed when using DCC. These
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interaction terms for PRI and TRI to our regression model, we cannot establish significant
reactions of the correlation to extreme climate risk shocks.

We do not find a significant link between oil price changes and the short-term DCC of
clean energy and technology stocks and only a few weakly significant effects on RWC.13

This observation fits well with the results obtained by previous studies, which indicate that oil
prices are of subordinate importance for the performance of both clean energy and technology
stocks [e.g., Henriques and Sadorsky (2008), Sadorsky (2012), Maghyereh et al. (2019),
Fahmy (2022)]. Our results add to these findings, as they suggest that oil prices are also
not the main determinant of the close relationship between the stock returns of both sectors.
Instead, this relationship appears to be significantly driven by climate risks.

4.3 Different climate risk effects on the returns of technology and clean energy
stocks

The negative association of PRI with the short-term correlation does not necessarily mean
that the returns of clean energy and technology stocks move in opposite directions after
physical climate risk shocks. We expect that the negative effect on correlation is induced by
a relatively stronger short-term reaction of clean energy stock returns to physical risk shocks
since expected cash flows of clean energy firms are directly associated with climate risks.
With regard to climate risks, technology firms have more diversified cash flows, which are
only partially generated by selling alternative energy technologies. Therefore, their cash flow
expectations should have a relatively smaller negative exposure to climate risks, meaning that
their stock prices would be less affected by daily fluctuations of PRI. We test our hypothesis
by regressing the daily returns of clean energy and technology stocks on PRI using lagged
stock returns, TRI, WTI returns, S&P 500 returns, the VIX, and changes in EPU, ADS,
and the 3-month U.S. Treasury Bill rate, as well as a January dummy and day-of-the-week
effects. We include one contemporaneous and two lags of the climate risk measures in the
return regression to capture the immediate reaction of stock prices to the relevant news. This
is consistent with our regression model from (4), which also accounts for the contemporane-
ous nexus between the climate risk indices and stock returns. Specifically, we estimate the
following regression:

ri,t = a0 + b1(Lk)ri,t + [b20 + b2(Lk)] P RIt

+ [b30 + b3(Lk)] T RIt +
N∑

j=4

b j (Lk)X jt + ut , (5)

where ri,t denotes the returns of PSE or ECO, and k = 2.
The estimated coefficients of interest are presented in Table 4. Although we do not find

statistically significant effects, the coefficients for the contemporaneous effect of PRI on
clean energy returns are positive and substantially larger in absolute terms than the effect
on technology returns, which is slightly negative but close to zero. This indicates that clean
energy stock prices show a much stronger response to physical risk shocks than technology
stocks. The asymmetric return response can plausibly result in a temporarily reduced near-
term correlation. As discussed in the previous section, the existing literature on climate

findings hold if S&P 500 returns and VIX levels as controls are replaced by returns of the Euro Stoxx 50 and
levels of the VSTOXX.
13 Parameter estimates for lagged log changes in the WTI crude oil spot price are presented in Table 8. We
find no significant parameters for log price changes in WTI front-month futures contracts.
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finance suggests a negative relationship between stock returns and exposure to climate risks.
Since clean energy firms should have an overall higher negative exposure to climate risks than
technology companies, their returns react more positively in response to climate risk shocks.
In a short-term setting, this could be particularly true for physical risks that immediately
raise the investors’ attention and affect their beliefs about climate change (Choi et al., 2020;
Alekseev et al., 2022). Results of Alekseev et al. (2022) indicate that investors tend to buy
stocks after a physical climate risk shock (e.g., extreme heat events) that could profit from
climate change by likely changing consumer preferences and regulations, for example.

Although the difference in return reactions to PRI is relatively large, the absolute daily
response of clean energy stocks to physical climate risk shocks is still small. This is also
reflected in PRI’s small but significant effect on the one-day-ahead correlation of technology
and clean energy stocks, as found in Sect. 4.2.

Overall, our analysis shows that physical and transition risks can have disparate effects
on stock prices, which also depend on the time horizon. This further underlines the need to
unravel both types of climate change risk in future research, as also demanded by Giglio et
al. (2021).

5 Conclusions

This paper offers a novel discussion on the interlinkages between clean energy stocks, tech-
nology stocks, and risks related to climate change. Since the need for a technology-based
energy transition to curb the repercussions of climate change might be perceived more urgent
with increasing climate risks, the latter can be a key determinant of the connection between
clean energy and technology stocks. Therefore, we examine the long- and short-term cor-
relation dynamics of clean energy and technology equity indices. Unlike previous studies
that focus on the role of oil prices, we explicitly investigate whether the return nexus of both
sectors is affected by shocks to physical and transition climate risks.

We use the news-based physical (PRI) and transition (TRI) risk indices of Bua et al. (2022).
First, we estimate the impact of physical and transition risk on the time-varying long-term
correlation between clean energy and technology stocks using DCC-MIDAS (Colacito et al.,
2011; Conrad et al., 2014). Second, we assess the effect of PRI and TRI on the short-term,
i.e., daily correlation dynamics estimated viaDCC-GARCH and rollingwindow correlations.
Our results demonstrate that an increase in physical and transition risks contributes to a higher
long-term correlation between clean energy and technology stocks. We find a more robust
effect originating from transition risk, suggesting that, for instance, regulatory climate actions
may contribute stronger to an intensified long-term connectedness between both sectors
than actual physical climate hazards. However, in the short run, physical risk is negatively
related to daily correlations, while transition risk appears less relevant. Our findings indicate
that this is due to a higher sensitivity of clean energy stock returns to physical climate
risk. Technology stock returns show smaller short-term reactions to physical risk shocks,
resulting in a temporarily decreased correlation. We control for a number of covariates,
including market volatility, economic policy uncertainty, business cycle variations, and oil
price changes. By comparing the results for PRI andTRIwith the climate risk indices of Engle
et al. (2020) and Gavriilidis (2021), we further demonstrate the importance of differentiating
between transition and physical climate risks.

The identified effects of physical and transition risk on the short- and long-term relationship
between clean and technology stocks are potentially helpful for investment decisions. The
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co-movement between clean energy and technology stocks and its positive association with
transition risks suggests that stocks of the two sectors are moving closer together over the
long run, e.g., in response to new climate-related regulations, thereby affecting the level of
portfolio diversification. Thus, investors should carefully evaluate transition and physical
climate risks when making inferences on the long-term correlation between clean energy
and technology stocks for asset allocation, portfolio optimization, and risk management. Our
findings can also have important policy implications. Sadorsky (2012) points out a potential
dilemma for investors, who might be inclined to invest in technology stocks rather than clean
energy firms, since both are highly correlated, but the latter are generally considered a more
risky investment. Our results reinforce this concern, as the correlation is expected to increase
in the future with further increased climate risks. Regulators may need to keep an eye on it
and, if necessary, ensure an appropriate investment environment for the clean energy sector.

Our work leaves scope for future research. Future studies can, for example, revisit findings
on the nexus of oil prices, technology, and clean energy stocks to explore return and risk
spillovers under the explicit consideration of climate-related risks.
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Appendix B: Robustness

See Appendix Tables 6, 7 and 8.

Table 6 Results of the DCC-MIDAS estimations based on daily log returns of U.S., European, and global
stock indices and various climate risk measures as exogenous drivers of the long-term correlation

α β m θ ω Obs LL

Panel A: NYSE Arca technology 100—WilderHill clean energy

Full sample, Jan 05–Jun 22

CPU 0.0483*** 0.9462*** 0.9176*** 10.1324 1.4118*** 3760 1566.81

Jan 05–Jun 17

WSJ 0.0425*** 0.9511*** 0.1671 12.5443 1.4960*** 2435 1117.74

PRI 0.0426*** 0.9495*** 0.9586*** 42.7248 1.0000 2435 1118.33

TRI 0.0430*** 0.9481*** 0.9532*** 26.6246* 5.3263 2435 1116.94

Jan 08–May 18

CHNEG 0.0428*** 0.9387*** 0.9580*** 23.5214* 1.0000*** 1762 663.19

PRI 0.0430*** 0.9436*** 1.0111*** 28.5308 1.0000 1762 658.01

TRI 0.0423*** 0.9295*** 1.0451*** 26.6652*** 41.6196** 1762 664.58

Panel B: EURO STOXX technology—S&P global clean energy

Full sample, Jan 05–Jun 22

PRI 0.0236*** 0.9592*** 0.5285*** 21.7838* 1.0000 3757 621.40

TRI 0.0233*** 0.9522*** 0.5687*** 16.5808*** 34.3180* 3757 624.27

Panel C: EURO STOXX technology—WilderHill clean energy

Full sample, Jan 05–Jun 22

PRI 0.0156*** 0.9716*** 0.4666*** 14.5556 1.0000 3757 406.56

TRI 0.0159*** 0.9682*** 0.4700*** 11.0979** 3.6725 3757 407.32

Panel D: NYSE Arca technology 100—S&P global clean energy

Full sample, Jan 05–Jun 22

PRI 0.0305*** 0.9623*** 0.6313*** 36.8524 1.0000 3757 764.03

TRI 0.0304*** 0.9601*** 0.6611*** 23.5155** 43.6160 3757 764.87

This table shows the estimation results of the DCC-MIDAS equations for the daily log returns of four pairs of clean energy
and technology stock indices and four different climate risk indices as explanatory variables for the long-term correlation
component. The conditional correlation matrix Rt = diag(Qt )

−1/2Qtdiag(Qt )
−1/2 is calculated from the quasi-correlation

matrix Qt = [qi j,t ]2,2i, j=1, where i and j denote the respective clean energy and technology stock indices. The corre-
lation’s daily (short-term) dynamics are estimated from: qi j,t = ρ̄i j,τ (1 − α − β) + αηi,t−1η j,t−1 + βqi j,t−1, where
ηi,t are standardized GJR-GARCH(1,1) residuals. While ρ̄i j,τ is interpreted as the constant unconditional expectation of
qi j,t in the original DCC specification of Engle (2002), ρ̄i j,τ describes the monthly-moving long-term correlation com-
ponent in the DCC-MIDAS model (Colacito et al., 2011; Conrad et al., 2014) driven by a monthly-available variable
Xτ , where ρ̄i j,τ = [exp (

2zi j,τ
) − 1]/[exp (

2zi j,τ
) + 1], zi j,τ = m + θ

∑K
k=1 ϕk (ω) Xτ−k , and the beta polynomial

ϕk (ω) = (k/K )ω−1/
∑K

s=1(s/K )ω−1. Monthly climate risk indices used as drivers (Xτ ) for the long-term correlation
component include: monthly averages of physical (PRI) and transition climate risk (TRI) from Bua et al. (2022); climate
policy uncertainty (CPU) from Gavriilidis (2021); Wall Street Journal climate change news index (WSJ) from Engle et
al. (2020); Crimson Hexagon’s negative sentiment climate change news index (CHNEG) from Engle et al. (2020). Since
TRI and PRI measure shocks to climate risk, we present the results for AR(1) innovations of WSJ, CHNEG, and CPU.
The results remain qualitatively unchanged for the original time series. Asterisks ***, **, * indicate the significance of the
estimated parameters at 1, 5, and 10%, respectively. LL is the log-likelihood of the underlying DCC model (not including
the univariate volatility process). The regressions are based on synchronized series of GJR-GARCH residuals over the given
sample periods. The DCC-MIDAS is estimated based on a lag length of K = 36 month for the long-term correlation driver
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Table 8 OLS parameter estimates for lagged WTI crude oil spot returns as an explanatory variable in a
regression model for explaining the daily level of correlation between clean energy and technology stock
returns

Dependent variable: ρt
(1) (2) (4)
DCC RWC DCC RWC DCC RWC

W T It−1 0.0055 0.0141 0.0066 0.0166 0.0057 0.0147

W T It−2 −0.0132 −0.0405* −0.0121 −0.0381* −0.0131 −0.0401*

W T It−3 0.0035 −0.0160 0.0030 −0.0154 0.0034 −0.0157

Controls Yes Yes Yes Yes Yes Yes

PRI Yes Yes No No Yes Yes

TRI No No Yes Yes Yes Yes

Year FE Yes Yes Yes Yes Yes Yes

# Obs 4394 4373 4394 4373 4394 4373

Adj. R2 0.942 0.929 0.941 0.929 0.942 0.929

This table presents the OLS coefficient estimates for regressing the daily (short-term) correlation, ρt , between
theNYSEArca Technology 100 (PSE) and theWilderHill Clean Energy (ECO) stock index on lagged daily log
returns of theWTI crude oil spot price. The correlation series, ρt , is either obtained from the fitted DCCmodel
or by using rolling window correlation (RWC) with a window size of 22 trading days, where the correlation on
day t is measured based on the returns from day t −22 until day t −1. The asterisks ***, **, and * indicate the
significance of the estimated parameters at 1, 5, and 10%. All models include an intercept and three correlation
lags. The model numeration is in accordance with Table 3, i.e., model (1) and (4) include three lags of PRI;
Model (2), and (4) include three lags of TRI. Controls include three lags of S&P 500 returns, the VIX, and
changes in EPU, ADS, and the 3-month Treasury Bill rate, as well as a January dummy, and day-of-the-week
effects. We use heteroskedasticity and autocorrelation corrected (HAC) standard errors with five lags
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