1,633 research outputs found

    Modeling the evolution of infrared luminous galaxies: the influence of the Luminosity-Temperature distribution

    Full text link
    The evolution of the luminous infrared galaxy population is explored using a pure luminosity evolution model which incorporates the locally observed luminosity-temperature distribution for IRAS galaxies. Pure luminosity evolution models in a fixed Λ\LambdaCDM cosmology are fitted to submillimeter (submm) and infrared counts, and backgrounds. It is found that the differences between the locally determined bivariate model and the single variable luminosity function (LF) do not manifest themselves in the observed counts, but rather are primarily apparent in the dust temperatures of sources in flux limited surveys. Statistically significant differences in the redshift distributions are also observed. The bivariate model is used to predict the counts, redshifts and temperature distributions of galaxies detectable by {\it Spitzer}. The best fitting model is compared to the high-redshift submm galaxy population, revealing a median redshift for the total submm population of z=1.80.4+0.9z=1.8^{+0.9}_{-0.4}, in good agreement with recent spectroscopic studies of submillimeter galaxies. The temperature distribution for the submm galaxies is modeled to predict the radio/submm indices of the submm galaxies, revealing that submm galaxies exhibit a broader spread in spectral energy distributions than seen in the local IRAS galaxies.Comment: Accepted for publication in ApJ. Quality of several figures reduced due to size restriction

    A view of the narrow-line region in the infrared: active galactic nuclei with resolved fine-structure lines in the Spitzer archive

    Get PDF
    We queried the Spitzer archive for high-resolution observations with the Infrared Spectrograph of optically selected active galactic nuclei (AGN) for the purpose of identifying sources with resolved fine-structure lines that would enable studies of the narrow-line region (NLR) at mid-infrared wavelengths. By combining 298 Spitzer spectra with 6 Infrared Space Observatory spectra, we present kinematic information of the NLR for 81 z<=0.3 AGN. We used the [NeV], [OIV], [NeIII], and [SIV] lines, whose fluxes correlate well with each other, to probe gas photoionized by the AGN. We found that the widths of the lines are, on average, increasing with the ionization potential of the species that emit them. No correlation of the line width with the critical density of the corresponding transition was found. The velocity dispersion of the gas, sigma, is systematically higher than that of the stars, sigma_*, in the AGN host galaxy, and it scales with the mass of the central black hole, M_BH. Further correlations between the line widths and luminosities L, and between L and M_BH, are suggestive of a three dimensional plane connecting log(M_BH) to a linear combination of log(sigma) and log(L). Such a plane can be understood within the context of gas motions that are driven by AGN feedback mechanisms, or virialized gas motions with a power-law dependence of the NLR radius on the AGN luminosity. The M_BH estimates obtained for 35 type 2 AGN from this plane are consistent with those obtained from the M_BH-sigma_* relation.Comment: ApJ, revised to match the print versio

    A Spinor Theory of Gravity and the Cosmological Framework

    Get PDF
    Recently we have presented a new formulation of the theory of gravity based on an implementation of the Einstein Equivalence Principle distinct from General Relativity. The kinetic part of the theory - that describes how matter is affected by the modified geometry due to the gravitational field - is the same as in General Relativity. However, we do not consider the metric as an independent field. Instead, it is an effective one, constructed in terms of two fundamental spinor fields Ψ\Psi and Υ\Upsilon and thus the metric does not have a dynamics of its own, but inherits its evolution through its relation with the fundamental spinors. In the first paper it was shown that the metric that describes the gravitational field generated by a compact static and spherically symmetric configuration is very similar to the Schwarzschild metric. In the present paper we describe the cosmological framework in the realm of the Spinor Theory of Gravity
    corecore