328 research outputs found

    Present and Future Searches for Leptoquarks

    Get PDF
    We review the present seach for scalar leptoquarks and the potential of the CERN Large Hadron Collider (LHC) to unravel the existence of first generation leptoquarks. Talk given by O. J. P. Eboli at the International Workshop on "Physics Beyond the Standard Model: from Theory to Experiment", Valencia, 1997.Comment: 10 pages, 3 figures included; LaTex, uses epsfig.sty and sprocl.st

    Sustainability perspectives: a new methodological approach for quantitative assessment

    Get PDF
    This paper proposes a new tool to assess sustainability and make the concept of sustainable development operational. It considers its multi-dimensional structure combining the information deriving from a selection of relevant sustainability indicators belonging to economic, social and environmental pillars. The main novelties of this approach are the modelling framework, a recursive-dynamic computable general equilibrium used to calculate the trend of all indicators over time throughout the world, and the aggregation methodology to reconcile them in one aggregate index to measure overall sustainability. The former allows capturing the sector and regional interactions and higher-order effects driven by background assumptions on relevant variables to depict future scenarios. The latter makes it possible to compare sustainability performances, under alternative scenarios, across countries and over time. Main results show that the current sustainability at world level differs from what the traditional measure of well-being, the GDP, depicts, highlighting the trade-offs among different components of sustainability. Moreover, in the next decade a slight decrease in world sustainability may occur, in spite of an expected increase in world domestic product. Finally, dedicated policies increase overall sustainability, showing that social and environmental benefits may be greater than the correlated economic costs

    Damped harmonic oscillators in the holomorphic representation

    Full text link
    Quantum dynamical semigroups are applied to the study of the time evolution of harmonic oscillators, both bosonic and fermionic. Explicit expressions for the density matrices describing the states of these systems are derived using the holomorphic representation. Bosonic and fermionic degrees of freedom are then put together to form a supersymmetric oscillator; the conditions that assure supersymmetry invariance of the corresponding dynamical equations are explicitly derived.Comment: 19 pages, plain-TeX, no figure

    Modelling the Service Quality of Public Bicycle Schemes Considering User Heterogeneity

    Get PDF
    This article proposes a methodology for studying the quality of service perceived by users of a public bicycle scheme. The public are involved from the first phases of the research through their presence in focus groups to identify the relevant variables asked about in the survey. Ordered probit models have been calibrated which consider systematic variations in preference and random parameters. The results highlight the importance of safety and available information above other service variables, as well as the adjustment in perception of overall quality after considering each of the characteristics of the service, as it is proposed in this methodology

    Recent Low x and Diffractive Collider Data

    Full text link
    Selected recent data from collider experiments pertaining to the understanding of QCD at low Bjorken-x are reviewed. The status of QCD and Regge factorisation in hard diffractive interactions is discussed in terms of data from HERA and the Tevatron. The possibility of anomalous behaviour in the γγ\gamma \gamma total cross section is confronted with the most recent measurements from LEP. Data from all three colliders that are sensitive to possible BFKL effects are presented and different interpretations are discussed.Comment: 9 pages, introductory talk from the 1999 Durham Phenomenology Workshop on Collider Physic

    The noncommutative degenerate electron gas

    Full text link
    The quantum dynamics of nonrelativistic single particle systems involving noncommutative coordinates, usually referred to as noncommutative quantum mechanics, has lately been the object of several investigations. In this note we pursue these studies for the case of multi-particle systems. We use as a prototype the degenerate electron gas whose dynamics is well known in the commutative limit. Our central aim here is to understand qualitatively, rather than quantitatively, the main modifications induced by the presence of noncommutative coordinates. We shall first see that the noncommutativity modifies the exchange correlation energy while preserving the electric neutrality of the model. By employing time-independent perturbation theory together with the Seiberg-Witten map we show, afterwards, that the ionization potential is modified by the noncommutativity. It also turns out that the noncommutative parameter acts as a reference temperature. Hence, the noncommutativity lifts the degeneracy of the zero temperature electron gas.Comment: 11 pages, to appear in J. Phys. A: Math. Ge

    Vacuum structure for expanding geometry

    Get PDF
    We consider gravitational wave modes in the FRW metrics in a de Sitter phase and show that the state space splits into many unitarily inequivalent representations of the canonical commutation relations. Non-unitary time evolution is described as a trajectory in the space of the representations. The generator of time evolution is related to the entropy operator. The thermodynamic arrow of time is shown to point in the same direction of the cosmological arrow of time. The vacuum is a two-mode SU(1,1) squeezed state of thermo field dynamics. The link between expanding geometry, squeezing and thermal properties is exhibited.Comment: Latex file, epsfig, 1 figure, 21 page

    Renormalization of Poincare Transformations in Hamiltonian Semiclassical Field Theory

    Get PDF
    Semiclassical Hamiltonian field theory is investigated from the axiomatic point of view. A notion of a semiclassical state is introduced. An "elementary" semiclassical state is specified by a set of classical field configuration and quantum state in this external field. "Composed" semiclassical states viewed as formal superpositions of "elementary" states are nontrivial only if the Maslov isotropic condition is satisfied; the inner product of "composed" semiclassical states is degenerate. The mathematical proof of Poincare invariance of semiclassical field theory is obtained for "elementary" and "composed" semiclassical states. The notion of semiclassical field is introduced; its Poincare invariance is also mathematically proved.Comment: LaTeX, 40 pages; short version of hep-th/010307

    Much Ado About Leptoquarks: A Comprehensive Analysis

    Get PDF
    We examine the phenomenological implications of a 200 GeV leptoquark in light of the recent excess of events at HERA. Given the relative predictions of events rates in e^+p versus e^-p, we demonstrate that classes of leptoquarks may be excluded, including those contained in E_6 GUT models. It is shown that future studies with polarized beams at HERA could reveal the chirality of the leptoquark fermionic coupling and that given sufficient luminosity in each e^\pm_{L,R} channel the leptoquark quantum numbers could be determined. The implications of 200-220 GeV leptoquarks at the Tevatron are examined. While present Tevatron data most likely excludes vector leptoquarks and leptogluons in this mass region, it does allow for scalar leptoquarks. We find that while leptoquarks have little influence on Drell-Yan production, further studies at the Main Injector are possible in the single production channel. We investigate precision electroweak measurements as well as the process e^+e^-\to q\bar q at LEP II and find they provide no further restrictions on these leptoquark models. We then ascertain that cross section and polarization asymmetry measurements at the NLC provide the only direct mechanism to determine the leptoquark's electroweak quantum numbers. The single production of leptoquarks in \gamma e collisions by both the backscattered laser and Weisacker-Williams techniques at the NLC is also discussed. Finally, we demonstrate that we can obtain successful coupling constant unification in models with leptoquarks, both with or without supersymmetry. The supersymmetric case requires the GUT group to be larger than SU(5) such as flipped SU(5)\times U(1)_X.Comment: Corrected single production cross section at Tevatron, updated atomic parity violation constraints, 55 page
    • 

    corecore