416 research outputs found

    Seasonal and Temperature-Associated Increases in Gram-Negative Bacterial Bloodstream Infections among Hospitalized Patients

    Get PDF
    BACKGROUND: Knowledge of seasonal trends in hospital-associated infection incidence may improve surveillance and help guide the design and evaluation of infection prevention interventions. We estimated seasonal variation in the frequencies of inpatient bloodstream infections (BSIs) caused by common bacterial pathogens and examined associations of monthly BSI frequencies with ambient outdoor temperature, precipitation, and humidity levels. METHODS: A database containing blood cultures from 132 U.S. hospitals collected between January 1999 and September 2006 was assembled. The database included monthly counts of inpatient blood cultures positive for several clinically important Gram-negative bacteria (Acinetobacter spp, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa) and Gram-positive bacteria (Enterococcus spp and Staphylococcus aureus). Monthly mean temperature, total precipitation, and mean relative humidity in the postal ZIP codes of participating hospitals were obtained from national meteorological databases. RESULTS: A total of 211,697 inpatient BSIs were reported during 9,423 hospital-months. Adjusting for long-term trends, BSIs caused by each gram-negative organism examined were more frequent in summer months compared with winter months, with increases ranging from 12.2% for E. coli (95% CI 9.2-15.4) to 51.8% for Acinetobacter (95% CI 41.1-63.2). Summer season was associated with 8.7% fewer Enterococcus BSIs (95% CI 11.0-5.8) and no significant change in S. aureus BSI frequency relative to winter. Independent of season, monthly humidity, monthly precipitation, and long-term trends, each 5.6°C (10°F) rise in mean monthly temperature corresponded to increases in gram-negative bacterial BSI frequencies ranging between 3.5% for E. coli (95% CI 2.1-4.9) to 10.8% for Acinetobacter (95% CI 6.9-14.7). The same rise in mean monthly temperature corresponded to an increase of 2.2% in S. aureus BSI frequency (95% CI 1.3-3.2) but no significant change in Enterococcus BSI frequency. CONCLUSIONS: Summer season and higher mean monthly outdoor temperature are associated with substantially increased frequency of BSIs, particularly among clinically important gram-negative bacteria

    CaracterizaciĂłn del ecosistema hĂ­drico y su funcionamiento hidrĂĄulico Puerto MazĂĄn, Loreto, PerĂș utilizando SIG

    Get PDF
    Con el propĂłsito de caracterizar el ecosistema hĂ­drico y evaluar el funcionamiento hidrĂĄulico de Puerto Mazan, Loreto, PerĂș, se recuperaron imĂĄgenes satelitales del programa espacial Landsat de las bandas MSS, TM y ETM, Bandas 3,4,5; e imĂĄgenes satelitales del Google earth; las que fueron procesadas con los software ENVI 5, ERDAS ENGINE, Leowowrks y Arcgis 10. Se determinĂł que el sistema hĂ­drico en el entorno de Puerto Mazan estĂĄ caracterizado por: el RĂ­o Napo, Islas “AB” y “C”, meandros “2” y “4”, lĂłbulo “abandonado”-“9”, cauces alivio “7” y 6”, RĂ­o MazĂĄn “8”. El funcionamiento hidrĂĄulico estĂĄ definido por: Partidor de flujo en Rio Napo; Grado de libertad representado por meandro “2” y LĂłbulo “abandonado”- “9”; cortas “1” previo al meandro “2” y corta “7” en el meandro “2”; aliviadero de demasĂ­as “7” que regula la entrada de flujo proveniente de la margen izquierda del RĂ­o Napo; Desarenador establecido por el RĂ­o MazĂĄn y atenuador de magnitud de la velocidad de flujo proveniente de la margen izquierda del RĂ­o Napo

    Modulated structures in electroconvection in nematic liquid crystals

    Full text link
    Motivated by experiments in electroconvection in nematic liquid crystals with homeotropic alignment we study the coupled amplitude equations describing the formation of a stationary roll pattern in the presence of a weakly-damped mode that breaks isotropy. The equations can be generalized to describe the planarly aligned case if the orienting effect of the boundaries is small, which can be achieved by a destabilizing magnetic field. The slow mode represents the in-plane director at the center of the cell. The simplest uniform states are normal rolls which may undergo a pitchfork bifurcation to abnormal rolls with a misaligned in-plane director.We present a new class of defect-free solutions with spatial modulations perpendicular to the rolls. In a parameter range where the zig-zag instability is not relevant these solutions are stable attractors, as observed in experiments. We also present two-dimensionally modulated states with and without defects which result from the destabilization of the one-dimensionally modulated structures. Finally, for no (or very small) damping, and away from the rotationally symmetric case, we find static chevrons made up of a periodic arrangement of defect chains (or bands of defects) separating homogeneous regions of oblique rolls with very small amplitude. These states may provide a model for a class of poorly understood stationary structures observed in various highly-conducting materials ("prechevrons" or "broad domains").Comment: 13 pages, 13 figure

    The Projected Rotational Velocity Distribution of a Sample of OB stars from a Calibration based on Synthetic He I lines

    Full text link
    We derive projected rotational velocities (vsini) for a sample of 156 Galactic OB star members of 35 clusters, HII regions, and associations. The HeI lines at λλ\lambda\lambda4026, 4388, and 4471A were analyzed in order to define a calibration of the synthetic HeI full-widths at half maximum versus stellar vsini. A grid of synthetic spectra of HeI line profiles was calculated in non-LTE using an extensive helium model atom and updated atomic data. The vsini's for all stars were derived using the He I FWHM calibrations but also, for those target stars with relatively sharp lines, vsini values were obtained from best fit synthetic spectra of up to 40 lines of CII, NII, OII, AlIII, MgII, SiIII, and SIII. This calibration is a useful and efficient tool for estimating the projected rotational velocities of O9-B5 main-sequence stars. The distribution of vsini for an unbiased sample of early B stars in the unbound association Cep OB2 is consistent with the distribution reported elsewhere for other unbound associations.Comment: Accepted for publication in The Astronomical Journa

    Interaction-driven breakdown of dynamical localization in a kicked quantum gas

    Full text link
    Quantum interference can terminate energy growth in a continually kicked system, via a single-particle ergodicity-breaking mechanism known as dynamical localization. The effect of many-body interactions on dynamically localized states, while important to a fundamental understanding of quantum decoherence, has remained unexplored despite a quarter-century of experimental studies. We report the experimental realization of a tunably-interacting kicked quantum rotor ensemble using a Bose-Einstein condensate in a pulsed optical lattice. We observe signatures of a prethermal localized plateau, followed for interacting samples by interaction-induced anomalous diffusion with an exponent near one half. Echo-type time reversal experiments establish the role of interactions in destroying reversibility. These results quantitatively elucidate the dynamical transition to many-body quantum chaos, advance our understanding of quantum anomalous diffusion, and delimit some possibilities for protecting quantum information in interacting driven systems.Comment: 17 pages including supp inf

    Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC

    Full text link
    While the tracking detectors of the ATLAS and CMS experiments have shown excellent performance in Run 1 of LHC data taking, and are expected to continue to do so during LHC operation at design luminosity, both experiments will have to exchange their tracking systems when the LHC is upgraded to the high-luminosity LHC (HL-LHC) around the year 2024. The new tracking systems need to operate in an environment in which both the hit densities and the radiation damage will be about an order of magnitude higher than today. In addition, the new trackers need to contribute to the first level trigger in order to maintain a high data-taking efficiency for the interesting processes. Novel detector technologies have to be developed to meet these very challenging goals. The German groups active in the upgrades of the ATLAS and CMS tracking systems have formed a collaborative "Project on Enabling Technologies for Silicon Microstrip Tracking Detectors at the HL-LHC" (PETTL), which was supported by the Helmholtz Alliance "Physics at the Terascale" during the years 2013 and 2014. The aim of the project was to share experience and to work together on key areas of mutual interest during the R&D phase of these upgrades. The project concentrated on five areas, namely exchange of experience, radiation hardness of silicon sensors, low mass system design, automated precision assembly procedures, and irradiations. This report summarizes the main achievements

    Chemical composition of B-type supergiants in the OB8, OB10, OB48, OB78 associations of M31

    Get PDF
    Absolute and differential chemical abundances are presented for the largest group of massive stars in M31 studied to date. These results were derived from intermediate resolution spectra of seven B-type supergiants, lying within four OB associations covering a galactocentric distance of 5 - 12 kpc. The results are mainly based on an LTE analysis, and we additionally present a full non-LTE, unified model atmosphere analysis of one star (OB78-277) to demonstrate the reliability of the differential LTE technique. A comparison of the stellar oxygen abundance with that of previous nebular results shows that there is an offset of between ~0.15 - 0.4 dex between the two methods which is critically dependent on the empirical calibration adopted for the R23 parameter with [O/H]. However within the typical errors of the stellar and nebular analyses (and given the strength of dependence of the nebular results on the calibration used) the oxygen abundances determined in each method are fairly consistent. We determine the radial oxygen abundance gradient from these stars, and do not detect any systematic gradient across this galactocentric range. We find that the inner regions of M31 are not, as previously thought, very 'metal rich'. Our abundances of C, N, O, Mg, Si, Al, S and Fe in the M31 supergiants are very similar to those of massive stars in the solar neighbourhood.Comment: 15 pages, 9 figures and 9 tables. Submitted to A&A April 200
    • 

    corecore