102 research outputs found

    Simplest cosmological model with the scalar field II. Influence of cosmological constant

    Full text link
    Continuing the investigation of the simplest cosmological model with the massive real scalar non-interacting inflaton field minimally coupled to gravity we study an influence of the cosmological constant on the behaviour of trajectories in closed minisuperspace Friedmann-Robertson-Walker model. The transition from chaotic to regular behaviour for large values of cosmological constant is discussed. Combining numerical calculations with qualitative analysis both in configuration and phase space we present a convenient classification of trajectories.Comment: 12 pages with 2 gif figures and 2 eps figures, mprocl.sty, To appear in International Journal of Modern Physics

    Smaller and better: The university of Michigan experience

    Full text link
    This paper discusses several hierarchical and sequential reduction options, including Balderston's budgetary strategies and this author's curricular change options. The latter are based on data gathered in a 1979-80 survey of 46 states on patterns of program reduction. Having introduced various reduction categories, the paper then focuses on the institutional shrinkage process currently being implemented at the University of Michigan. Four specific strategies are being discussed: (1) across-the-board cuts, (2) reduction of nonacademic programs; (3) long-range faculty reduction procedures, and (4) program discontinuance. A host of potential problems regarding the elimination of academic programs is described. The paper concludes by providing several general recommendations for institutional shrinkage procedures.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43589/1/11162_2004_Article_BF00992049.pd

    Unifying phantom inflation with late-time acceleration: scalar phantom-non-phantom transition model and generalized holographic dark energy

    Full text link
    The unifying approach to early-time and late-time universe based on phantom cosmology is proposed. We consider gravity-scalar system which contains usual potential and scalar coupling function in front of kinetic term. As a result, the possibility of phantom-non-phantom transition appears in such a way that universe could have effectively phantom equation of state at early time as well as at late time. In fact, the oscillating universe may have several phantom and non-phantom phases. As a second model we suggest generalized holographic dark energy where infrared cutoff is identified with combination of FRW parameters: Hubble constant, particle and future horizons, cosmological constant and universe life-time (if finite). Depending on the specific choice of the model the number of interesting effects occur: the possibility to solve the coincidence problem, crossing of phantom divide and unification of early-time inflationary and late-time accelerating phantom universe. The bound for holographic entropy which decreases in phantom era is also discussed.Comment: 13 pages, clarifications/refs added, to match with published versio

    Could Only Fermions Be Elementary?

    Full text link
    In standard Poincare and anti de Sitter SO(2,3) invariant theories, antiparticles are related to negative energy solutions of covariant equations while independent positive energy unitary irreducible representations (UIRs) of the symmetry group are used for describing both a particle and its antiparticle. Such an approach cannot be applied in de Sitter SO(1,4) invariant theory. We argue that it would be more natural to require that (*) one UIR should describe a particle and its antiparticle simultaneously. This would automatically explain the existence of antiparticles and show that a particle and its antiparticle are different states of the same object. If (*) is adopted then among the above groups only the SO(1,4) one can be a candidate for constructing elementary particle theory. It is shown that UIRs of the SO(1,4) group can be interpreted in the framework of (*) and cannot be interpreted in the standard way. By quantizing such UIRs and requiring that the energy should be positive in the Poincare approximation, we conclude that i) elementary particles can be only fermions. It is also shown that ii) C invariance is not exact even in the free massive theory and iii) elementary particles cannot be neutral. This gives a natural explanation of the fact that all observed neutral states are bosons.Comment: The paper is considerably revised and the following results are added: in the SO(1,4) invariant theory i) the C invariance is not exact even for free massive particles; ii) neutral particles cannot be elementar

    How digital is agriculture in a subset of countries from South America? Adoption and limitations.

    Get PDF
    Abstract. Digital agriculture (DA) can contribute solutions to meet an increase in healthy, nutritious, and affordable food demands in an efficient and sustainable way. South America (SA) is one of the main grain and protein producers in the world but the status of DA in the region is unknown. A systematic review and case studies from Brazil, Argentina, Uruguay, and Chile were conducted to address the following objectives: (1) quantify adoption of existing DA technologies, (2) identify limitations for DA adoption; and (3) summarise existing metrics to benchmark DA benefits. Level of DA adoption was led by Brazil and Argentina followed by Uruguay and at a slower rate, Chile. GPS guidance systems, mapping tools, mobile apps and remote sensing were the most adopted DA technologies in SA. The most reported limitations to adoption were technology cost, lack of training, limited number of companies providing services, and unclear benefits from DA. Across the case studies, there was no clear definition of DA. To mitigate some of these limitations, our findings suggest the need for a DA educational curriculum that can fulfill the demand for job skills such as data processing, analysis and interpretation. Regional efforts are needed to standardise these metrics. This will allow stakeholders to design targeted initiatives to promote DA towards sustainability of food production in the region.Special issue

    T cell receptor binding affinity governs the functional profile of cancer-specific CD8+T cells

    Get PDF
    Antigen-specific T cell receptor (TCR) gene transfer via patient-derived T cells is an attractive approach to cancer therapy, with the potential to circumvent immune regulatory networks. However, high-affinity tumour-specific TCR clonotypes are typically deleted from the available repertoire during thymic selection because the vast majority of targeted epitopes are derived from autologous proteins. This process places intrinsic constraints on the efficacy of T cell-based cancer vaccines and therapeutic strategies that employ naturally generated tumour-specific TCRs. In this study, we used altered peptide ligands and lentivirus-mediated transduction of affinity-enhanced TCRs selected by phage display to study the functional properties of CD8+ T cells specific for three different tumour-associated peptide antigens across a range of binding parameters. The key findings were: (i) TCR affinity controls T cell antigen sensitivity and polyfunctionality; (ii) supraphysiological affinity thresholds exist, above which T cell function cannot be improved; and (iii) T cells transduced with very high-affinity TCRs exhibit cross-reactivity with self-derived peptides presented by the restricting human leucocyte antigen. Optimal system-defined affinity windows above the range established for natural tumour-specific TCRs therefore allow the enhancement of T cell effector function without off-target effects. These findings have major implications for the rational design of novel TCR-based biologics underpinned by rigorous preclinical evaluation

    In vitro hypoxia-conditioned colon cancer cell lines derived from HCT116 and HT29 exhibit altered apoptosis susceptibility and a more angiogenic profile in vivo

    Get PDF
    Hypoxia is an important selective force in the clonal evolution of tumours. Through HIF-1 and other transcription factors combined with tumour-specific genetic alterations, hypoxia is a dominant factor in the angiogenic phenotype. Cellular adaptation to hypoxia is an important requirement of tumour progression independent of angiogenesis. The adaptive changes, insofar as they alter hypoxia-induced apoptosis, are likely to determine responsiveness to antiangiogenic strategies. To investigate this adaptation of tumour cells to hypoxia, we recreated in vitro the in vivo situation of chronic intermittent exposure to low-oxygen levels. The colon carcinoma cell lines HT29 and HCT116 were subjected to 40 episodes of sublethal hypoxia (4 h) three times a week. The resulting two hypoxia-conditioned cell lines have been maintained in culture for more than 2 years. In both cell lines changes in doubling times occurred: in HT29 an increase, and in HCT116 a decrease. Cell survival in response to hypoxia and to DNA damage differed strikingly in the two cell lines. The HT29 hypoxia-conditioned cells were more resistant than the parental line to a 24 h hypoxic challenge, while those from HCT116 surprisingly were more sensitive. Sensitivity to cisplatin in vitro was also significantly different for the hypoxia-conditioned compared with the parental lines, suggesting a change in pathways leading to apoptosis following DNA damage signaling. The growth of both conditioned cell lines in vivo as xenografts in immunodeficient (SCID) mice was more rapid than their parental lines, and was accompanied in each by evidence of enhanced vascular proliferation as a consequence of the hypoxia-conditioning. Thus the changes in apoptotic susceptibility were independent of altered angiogenesis. The derivation of these lines provides a model for events within hypoxic regions of colon cancers, and for the acquisition of resistance and sensitivity characteristics that may have therapeutic implications for the use of antiangiogenesis drugs
    • 

    corecore