39,438 research outputs found

    Human Factors of Flight-deck Automation: NASA/Industry Workshop

    Get PDF
    The scope of automation, the benefits of automation, and automation-induced problems were discussed at a workshop held to determine whether those functions previously performed manually on the flight deck of commercial aircraft should always be automated in view of various human factors. Issues which require research for resolution were identified. The research questions developed are presented

    Effect of strain on the orbital and magnetic ordering of manganite thin films and their interface with an insulator

    Full text link
    We study the effect of uniform uniaxial strain on the ground state electronic configuration of a thin film manganite. Our model Hamiltonian includes the double-exchange, the Jahn-Teller electron-lattice coupling, and the antiferromagnetic superexchange. The strain arises due to the lattice mismatch between an insulating substrate and a manganite which produces a tetragonal distortion. This is included in the model via a modification of the hopping amplitude and the introduction of an energy splitting between the Mn e_g levels. We analyze the bulk properties of half-doped manganites and the electronic reconstruction at the interface between a ferromagnetic and metallic manganite and the insulating substrate. The strain drives an orbital selection modifying the electronic properties and the magnetic ordering of manganites and their interfaces.Comment: 8 pages, 8 figure

    Optimization of graded multilayer designs for astronomical x-ray telescopes

    Get PDF
    We developed a systematic method for optimizing the design of depth-graded multilayers for astronomical hard-x-ray and soft-Ī³-ray telescopes based on the instrumentā€™s bandpass and the field of view. We apply these methods to the design of the conical-approximation Wolter I optics employed by the balloon-borne High Energy Focusing Telescope, using W/Si as the multilayer materials. In addition, we present optimized performance calculations of mirrors, using other material pairs that are capable of extending performance to photon energies above the W K-absorption edge (69.5 keV), including Pt/C, Ni/C, Cu/Si, and Mo/Si

    Laterally pumped GaAs/AlGaAs quantum wells as sources of broadband terahertz radiation

    Get PDF
    In this work we consider lateral current pumped GaAs/AlGaAs quantum wells as sources of incoherent terahertz radiation. The lateral field heats the electrons in a two-dimensional quantum layer and increases the population of higher subbands, hence also increasing the radiation power generated in spontaneous intersubband emission processes. Digitally graded quasi-parabolic and simple square quantum wells are considered, and the advantages of both types are discussed. Calculations at lattice temperatures of 77 K and 300 K, for electric fields up to 10 kV/cm, show that the optical output power of ~100āˆ’200 W/m2 may be achieved for the 7 THz source. The main peak of the spectrum, at 7 THz, of the quasi-parabolic quantum well exceeds the black body radiation at 300 K by approximately a factor of two and by two orders of magnitude at 77 K

    A time series from the beach environment-II

    Get PDF
    This work is the second in a continuing series of time-series data reports to be published periodically as a result of field investigations in the beach-ocean-atmosphere system by Dr. Wyman Harrison and his associates. The first report was published as Technical Memorandum ERLTM-AOL 1 of ESSA\u27s Atlantic Oceanographic Laboratories. This series of reports will allow other researchers to test hypotheses or to experiment with analytical procedures without going through the expensive and somewhat arduous task of obtaining the data

    A time series from the beach environment-II

    Get PDF
    This work is the second in a continuing series of time-series data reports to be published periodically as a result of field investigations in the beach-ocean-atmosphere system by Dr. Wyman Harrison and his associates. The first report was published as Technical Memorandum ERLTM-AOL 1 of ESSA\u27s Atlantic Oceanographic Laboratories. This series of reports will allow other researchers to test hypotheses or to experiment with analytical procedures without going through the expensive and somewhat arduous task of obtaining the data

    Temperature-dependent resistivity of suspended graphene

    Full text link
    In this paper we investigate the electron-phonon contribution to the resistivity of suspended single layer graphene. In-plane as well as flexural phonons are addressed in different temperature regimes. We focus on the intrinsic electron-phonon coupling due to the interaction of electrons with elastic deformations in the graphene membrane. The competition between screened deformation potential vs fictitious gauge field coupling is discussed, together with the role of tension in the suspended flake. In the absence of tension, flexural phonons dominate the phonon contribution to the resistivity at any temperature TT with a T5/2T^{5/2}_{} and T2T^{2}_{} dependence at low and high temperatures, respectively. Sample-specific tension suppresses the contribution due to flexural phonons, yielding a linear temperature dependence due to in-plane modes. We compare our results with recent experiments.Comment: 11 pages, 3 figure

    Application of an Imprint-and-Report Sensor Array for Detection of the Dietary Metabolite Trimethylamine N-Oxide and Its Precursors in Complex Mixtures

    Get PDF
    Trimethylamine N-oxide (TMAO) is produced in the gut via metabolism of dietary betaine, choline, and carnitine, and elevated TMAO in plasma is associated with adverse health effects, including cardiovascular events. Currently, we lack high throughput methods for sensing these metabolites and detecting high TMAO. Thus, we have adapted our previously described "imprint-and-report" fluorescent sensing method using dynamic combinatorial libraries (DCLs) to create a sensor array for these four metabolites that functions at physiologically relevant concentrations. Templation of DCLs with dye and subsequent addition of analytes generates a fluorescent fingerprint for each metabolite and allows for differentiation via principal component analysis (PCA). Furthermore, we demonstrate that this system can be used to characterize mixtures of the metabolites in both buffer and human plasma samples. Using three to six DCLs, we can distinguish between plasma samples with healthy and elevated levels of TMAO
    • ā€¦
    corecore