5,390 research outputs found

    Superconductivity of Quasi-One-Dimensional Electrons in Strong Magnetic Field

    Full text link
    The superconductivity of quasi-one-dimensional electrons in the magnetic field is studied. The system is described as the one-dimensional electrons with no frustration due to the magnetic field. The interaction is assumed to be attractive between electrons in the nearest chains, which corresponds to the lines of nodes of the energy gap in the absence of the magnetic field. The effective interaction depends on the magnetic field and the transverse momentum. As the magnetic field becomes strong, the transition temperature of the spin-triplet superconductivity oscillates, while that of the spin-singlet increases monotonically.Comment: 15 pages, RevTeX, 3 PostScript figures in uuencoded compressed tar file are appende

    Mott insulator to superfluid transition in the Bose-Hubbard model: a strong-coupling approach

    Get PDF
    We present a strong-coupling expansion of the Bose-Hubbard model which describes both the superfluid and the Mott phases of ultracold bosonic atoms in an optical lattice. By performing two successive Hubbard-Stratonovich transformations of the intersite hopping term, we derive an effective action which provides a suitable starting point to study the strong-coupling limit of the Bose-Hubbard model. This action can be analyzed by taking into account Gaussian fluctuations about the mean-field approximation as in the Bogoliubov theory of the weakly interacting Bose gas. In the Mott phase, we reproduce results of previous mean-field theories and also calculate the momentum distribution function. In the superfluid phase, we find a gapless spectrum and compare our results with the Bogoliubov theory.Comment: 8 pages, 6 figures; (v2) Two references adde

    Quantum Hall effect anomaly and collective modes in the magnetic-field-induced spin-density-wave phases of quasi-one-dimensional conductors

    Full text link
    We study the collective modes in the magnetic-field-induced spin-density-wave (FISDW) phases experimentally observed in organic conductors of the Bechgaard salts family. In phases that exhibit a sign reversal of the quantum Hall effect (Ribault anomaly), the coexistence of two spin-density waves gives rise to additional collective modes besides the Goldstone modes due to spontaneous translation and rotation symmetry breaking. These modes strongly affect the charge and spin response functions. We discuss some experimental consequences for the Bechgaard salts.Comment: Final version (LaTex, 8 pages, no figure), to be published in Europhys. Let

    Quantum widening of CDT universe

    Full text link
    The physical phase of Causal Dynamical Triangulations (CDT) is known to be described by an effective, one-dimensional action in which three-volumes of the underlying foliation of the full CDT play a role of the sole degrees of freedom. Here we map this effective description onto a statistical-physics model of particles distributed on 1d lattice, with site occupation numbers corresponding to the three-volumes. We identify the emergence of the quantum de-Sitter universe observed in CDT with the condensation transition known from similar statistical models. Our model correctly reproduces the shape of the quantum universe and allows us to analytically determine quantum corrections to the size of the universe. We also investigate the phase structure of the model and show that it reproduces all three phases observed in computer simulations of CDT. In addition, we predict that two other phases may exists, depending on the exact form of the discretised effective action and boundary conditions. We calculate various quantities such as the distribution of three-volumes in our model and discuss how they can be compared with CDT.Comment: 19 pages, 13 figure

    Generalized Entropies

    Full text link
    We study an entropy measure for quantum systems that generalizes the von Neumann entropy as well as its classical counterpart, the Gibbs or Shannon entropy. The entropy measure is based on hypothesis testing and has an elegant formulation as a semidefinite program, a type of convex optimization. After establishing a few basic properties, we prove upper and lower bounds in terms of the smooth entropies, a family of entropy measures that is used to characterize a wide range of operational quantities. From the formulation as a semidefinite program, we also prove a result on decomposition of hypothesis tests, which leads to a chain rule for the entropy.Comment: 21 page

    Regulation of virulence in Francisella tularensis by small non-coding RNAs

    Get PDF
    Using a cDNA cloning and sequencing approach we have shown that Francisella tularensis expresses homologues of several small RNAs
(sRNAs) that are well-conserved among diverse bacteria. We have also discovered two abundant putative sRNAs that share no sequence similarity or conserved genomic context with any previously annotated regulatory transcripts. Deletion of either of these two loci led to significant changes in the expression of several mRNAs that likely include the cognate target(s) of these sRNAs. Deletion of these sRNAs did not, however, significantly alter F. tularensis growth under various stress conditions in vitro, its replication in murine cells, or its ability to induce disease in a mouse model of F. tularensis infection

    Genome-Wide Association to Body Mass Index and Waist Circumference: The Framingham Heart Study 100K Project

    Get PDF
    BACKGROUND: Obesity is related to multiple cardiovascular disease (CVD) risk factors as well as CVD and has a strong familial component. We tested for association between SNPs on the Affymetrix 100K SNP GeneChip and measures of adiposity in the Framingham Heart Study. METHODS: A total of 1341 Framingham Heart Study participants in 310 families genotyped with the Affymetrix 100K SNP GeneChip had adiposity traits measured over 30 years of follow up. Body mass index (BMI), waist circumference (WC), weight change, height, and radiographic measures of adiposity (subcutaneous adipose tissue, visceral adipose tissue, waist circumference, sagittal height) were measured at multiple examination cycles. Multivariable-adjusted residuals, adjusting for age, age-squared, sex, smoking, and menopausal status, were evaluated in association with the genotype data using additive Generalized Estimating Equations (GEE) and Family Based Association Test (FBAT) models. We prioritized mean BMI over offspring examinations (1–7) and cohort examinations (10, 16, 18, 20, 22, 24, 26) and mean WC over offspring examinations (4–7) for presentation. We evaluated associations with 70,987 SNPs on autosomes with minor allele frequencies of at least 0.10, Hardy-Weinberg equilibrium p ≥ 0.001, and call rates of at least 80%. RESULTS: The top SNPs to be associated with mean BMI and mean WC by GEE were rs110683 (p-value 1.22*10-7) and rs4471028 (p-values 1.96*10-7). Please see for the complete set of results. We were able to validate SNPs in known genes that have been related to BMI or other adiposity traits, including the ESR1 Xba1 SNP, PPARG, and ADIPOQ. CONCLUSION: Adiposity traits are associated with SNPs on the Affymetrix 100K SNP GeneChip. Replication of these initial findings is necessary. These data will serve as a resource for replication as more genes become identified with BMI and WC.National Heart, Lung, and Blood Institute's Framingham Heart Study (N01-HC-25195); Atwood (R01 DK066241); National Institutes of Health National Center for Research Resources Shared Instrumentation grant (1S10RR163736-01A1

    Holomorphic Simplicity Constraints for 4d Spinfoam Models

    Full text link
    Within the framework of spinfoam models, we revisit the simplicity constraints reducing topological BF theory to 4d Riemannian gravity. We use the reformulation of SU(2) intertwiners and spin networks in term of spinors, which has come out from both the recently developed U(N) framework for SU(2) intertwiners and the twisted geometry approach to spin networks and spinfoam boundary states. Using these tools, we are able to perform a holomorphic/anti-holomorphic splitting of the simplicity constraints and define a new set of holomorphic simplicity constraints, which are equivalent to the standard ones at the classical level and which can be imposed strongly on intertwiners at the quantum level. We then show how to solve these new holomorphic simplicity constraints using coherent intertwiner states. We further define the corresponding coherent spin network functionals and introduce a new spinfoam model for 4d Riemannian gravity based on these holomorphic simplicity constraints and whose amplitudes are defined from the evaluation of the new coherent spin networks.Comment: 27 page

    A strong-coupling expansion for the Hubbard model

    Full text link
    We reconsider the strong-coupling expansion for the Hubbard model recently introduced by Sarker and Pairault {\it et al.} By introducing slave particles that act as projection operators onto the empty, singly occupied and doubly occupied atomic states, the perturbation theory around the atomic limit distinguishes between processes that do conserve or do not conserve the total number of doubly occupied sites. This allows for a systematic t/Ut/U expansion that does not break down at low temperature (tt being the intersite hopping amplitude and UU the local Coulomb repulsion). The fermionic field becomes a two-component field, which reflects the presence of the two Hubbard bands. The single-particle propagator is naturally expressed as a function of a 2×22 \times 2 matrix self-energy. Furthermore, by introducing a time- and space-fluctuating spin-quantization axis in the functional integral, we can expand around a ``non-degenerate'' ground-state where each singly occupied site has a well defined spin direction (which may fluctuate in time). This formalism is used to derive the effective action of charge carriers in the lower Hubbard band to first order in t/Ut/U. We recover the action of the t-J model in the spin-hole coherent-state path integral. We also compare our results with those previously obtained by studying fluctuations around the large-UU Hartree-Fock saddle point.Comment: 20 pages RevTex, 3 figure

    Large Deviations Analysis for Distributed Algorithms in an Ergodic Markovian Environment

    Get PDF
    We provide a large deviations analysis of deadlock phenomena occurring in distributed systems sharing common resources. In our model transition probabilities of resource allocation and deallocation are time and space dependent. The process is driven by an ergodic Markov chain and is reflected on the boundary of the d-dimensional cube. In the large resource limit, we prove Freidlin-Wentzell estimates, we study the asymptotic of the deadlock time and we show that the quasi-potential is a viscosity solution of a Hamilton-Jacobi equation with a Neumann boundary condition. We give a complete analysis of the colliding 2-stacks problem and show an example where the system has a stable attractor which is a limit cycle
    corecore