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Mott insulator to super�uid transition in the Bose-Hubbard model: a strong-ouplingapproahK. SenguptaDepartment of Physis, University of Toronto, 60 St. George Street, Toronto M5T 2Y4 ON, Canadaand Department of Physis, Yale university, New Haven, CT-06520-8120N. DupuisDepartment of Mathematis, Imperial College,180 Queen's Gate, London SW7 2AZ, UKand Laboratoire de Physique des Solides, CNRS UMR 8502,Université Paris-Sud, 91405 Orsay, Frane(Dated: Deember 8, 2004)We present a strong-oupling expansion of the Bose-Hubbard model whih desribes both thesuper�uid and the Mott phases of ultraold bosoni atoms in an optial lattie. By performingtwo suessive Hubbard-Stratonovih transformations of the intersite hopping term, we derive ane�etive ation whih provides a suitable starting point to study the strong-oupling limit of theBose-Hubbard model. This ation an be analyzed by taking into aount Gaussian �utuationsabout the mean-�eld approximation as in the Bogoliubov theory of the weakly interating Bosegas. In the Mott phase, we reprodue results of previous mean-�eld theories and also alulate themomentum distribution funtion. In the super�uid phase, we �nd a gapless spetrum and ompareour results with the Bogoliubov theory.PACS numbers: 05.30.Jp,73.43.Nq,03.75.LmI. INTRODUCTIONReent experiments on ultraold trapped atomi gaseshave opened a new window onto the phases of quan-tum matter.1,2 A gas of bosoni atoms in an optial ormagneti trap has been reversibly tuned between super-�uid (SF) and insulating ground states by varying thestrength of a periodi potential produed by standingoptial waves. This transition has been explained on thebasis of the Bose-Hubbard model with on-site repulsiveinterations and hopping between nearest neighboringsites of the lattie.3 As long as the atom-atom intera-tions are small ompared to the hopping amplitude, theground state remains super�uid. In the opposite limitof a strong lattie potential, the interation energy dom-inates and the ground state is a Mott insulator (MI) whenthe density is ommensurate, with an integer number ofatoms loalized at eah lattie site.The Gross-Pitaevskii equation or the Bogoliubovtheory4 assume quantum �utuations to be small andare unable to desribe the SF-MI transition and the MIphase. The SF-MI transition is usually studied within astrong-oupling perturbation theory whih assumes thekineti energy to be small and treats exatly the on-site repulsion. In the simplest version, the kineti en-ergy term is onsidered within mean-�eld theory.3,5,6,7The mean-�eld approximation is well known to give areasonable estimate of the ritial on-site repulsion atwhih the MI-SF transition ours. Flutuation orre-tions to the mean-�eld approah have also been onsid-ered within a systemati strong-oupling expansion.8 Allthese approahes have given a reasonable desription ofthe MI phase and in partiular of the exitation spe-

trum. However, they have not provided a desription ofthe SF phase.
In this work, we develop a strong-oupling expansionof the Bose-Hubbard model whih allows us to extendthe treatment of Refs. 3,5,6,7 and desribe both theMI and SF phases. Our approah is similar to strong-oupling expansions introdued for the (fermioni) Hub-bard model.9,10 In Se. II, we derive an e�etive ation forthe Bose-Hubbard model in the strong-oupling limit byperforming two suessive Hubbard-Stratonovih trans-formations of the intersite hopping term. This e�etiveation involves the exat one- and two-partile Green'sfuntions in the loal limit (i.e. in the absene of inter-site hopping). We then use the standard Bogoliubov ap-proximation: we perform a saddle-point (or mean-�eld)approximation and expand the ation to quadrati orderin the �utuations (Se. III). In the MI phase, we reoverthe previous mean-�eld result:5,6 We �nd a gapped ex-itation spetrum whih beomes gapless at the MI-SFtransition. We also alulate the momentum distributionfuntion and study the ritial behavior at the transition.In the SF phase, we obtain a gapless spetrum (in agree-ment with Goldstone theorem) and ompute the Bogoli-ubov sound mode veloity. We ompare our results withthe Bogoliubov theory.
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2II. EFFECTIVE ACTION IN THESTRONG-COUPLING LIMITThe Bose-Hubbard model is de�ned by the Hamilto-nian
H = −t

∑

〈r,r′〉

(ψ̂†
rψ̂r′ + h.c.)− µ

∑

r

n̂r +
U

2

∑

r

n̂r(n̂r − 1),(1)where ψ̂r, ψ̂
†
r are bosoni operators and n̂r = ψ̂†

rψ̂r. Thedisrete variable r labels the di�erent sites (i.e. minima)of the optial lattie. t is the hopping amplitude betweennearest sites 〈r, r′〉 and U the on-site repulsion. The op-tial lattie is assumed to be bipartite with oordinationnumber z. The density, i.e. the average number n ofbosons per site, is �xed by the hemial potential µ.We write the partition funtion Z as a funtional in-tegral over a omplex �eld ψ with the ation S[ψ∗, ψ] =
∫ β

0
dτ{

∑

r
ψ∗

r
∂τψr + H [ψ∗, ψ]} [τ is an imaginary timeand β = 1/T the inverse temperature℄. Introduing anauxialiary �eld φ to deouple the intersite hopping termby means of a Hubbard-Stratonovih transformation,9,10we obtain

Z =

∫

D[ψ∗, ψ, φ∗, φ]e−(φ|t−1φ)+[(φ|ψ)+c.c.]−S0[ψ
∗,ψ]

= Z0

∫

D[φ∗, φ]e−(φ|t−1φ)
〈

e(φ|ψ)+c.c.
〉

0

= Z0

∫

D[φ∗, φ]e−(φ|t−1φ)+W [φ∗,φ], (2)where we use the shorthand notation (φ|ψ) =
∑

a φ
∗
aψa =

∫ β

0
dτa

∑

ra
φ∗(ra)ψ(ra). t−1 denotes the inverse of theintersite hopping matrix de�ned by trr′ = t if r, r′ arenearest neighbors and trr′ = 0 otherwise. S0 and Z0are the ation and partition funtion in the loal limit(t = 0). 〈· · · 〉0 means that the average is taken with

S0[ψ
∗, ψ]. In the last line of (2), we have introdued thegenerating funtion W [φ∗, φ] = ln〈exp

∑

a(φ
∗
aψa+c.c.)〉0of onneted loal Green's funtions:11

GRc
{ai,bi}

= (−1)R〈ψa1
· · ·ψaR

ψ∗
bR

· · ·ψ∗
b1〉

=
(−1)Rδ(2R)W [φ∗, φ]

δφ∗a1
· · · δφ∗aR

δφbR
· · · δφb1

∣

∣

∣

∣

∣

φ∗=φ=0

, (3)where {ai, bi} = {a1 · · · aR, b1 · · · bR}. Inverting Eq. (3),we obtain
W [φ∗, φ] =

∞
∑

R=1

(−1)R

(R!)2

′
∑

a1···bR

GRc
{ai,bi}

φ∗a1
· · ·φ∗aR

φbR
· · ·φb1 ,(4)where ∑′ means that all the �elds share the same valueof the site index. If we trunateW [φ∗, φ] to quarti order

in the �elds, we obtain the ation
S[φ∗, φ] = (φ|t−1φ) −W [φ∗, φ]

=
∑

a,b

φ∗a(t
−1
ab +Gab)φb

−
1

4

∑

a1,a2,b1,b2

GIIc
a1a2,b1b2φ

∗
a1
φ∗a2

φb2φb1 , (5)where G ≡ GI. Eq. (5) was used as a starting point byvan Oosten et. al. to study the instability of the MIwith respet to super�uidity.6 Their results are summa-rized in Appendix C and lead to the usual mean-�eldphase diagram shown in Fig. 1. It is tempting to go be-yond the mean-�eld approximation by onsidering Gaus-sian �utuations of the φ �eld about its mean-�eld value.The Green's funtion obtained in this way is however notphysial sine it leads in the SF phase to a spetral fun-tion whih is not normalized to unity.13 Physial quan-tities like the exitation spetrum, the veloity of theBogoliubov sound mode or the momentum distributionin the SF phase are therefore out of reah within thisapproah.
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FIG. 1: Phase diagram of the Bose-Hubbard model showingthe super�uid phase (SF) and the Mott insulating (MI) phasesat ommensurate �lling n. The dashed lines orresponds to a�xed density n = 0.2, n = 1 and n = 2. For a ommensuratedensity n, the MI-SF transition ours for U/(zt) = 2n +

1 + 2(n2 + n)1/2 (for n = 1, this yields U/(zt) ≃ 5.83, i.e.
U/t ≃ 23.31 for a two-dimensional atomi gas in a squareoptial lattie).These di�ulties an be irumvented if one performs aseond Hubbard-Stratonovih deoupling of the hoppingterm:
Z = Z0

∫

D[ψ∗, ψ, φ∗, φ]e(ψ|tψ)−[(ψ|φ)+c.c.]+W [φ∗,φ]. (6)In Appendix A, we show that the auxiliary �eld of thistransformation has the same orrelation funtions as theoriginal boson �eld (hene the same notation for both�elds). The e�etive ation S[ψ∗, ψ] is obtained by inte-grating out the φ �eld in Eq. (6). This proedure was ar-ried out in detail in Ref. 10 in the ontext of the fermioni



3Hubbard model. Similarly, we obtain12
S[ψ∗, ψ] = −

∑

a,b

ψ∗
a(G

−1
ab + tab)ψb

+
1

4

∑

a1,a2,b1,b2

ΓII
a1a2,b1,b2ψ

∗
a1
ψ∗
a2
ψb2ψb1 , (7)where ΓII(τ1, τ2; τ3, τ4) is the (exat) two-partile vertexin the loal limit. In Eq. (7), we have negleted R-partile verties (R ≥ 3) whose amplitudes are given bythe (exat) loal R-partile verties ΓR.10 ΓII is loal inspae but has a ompliated time dependene (see Ap-pendix B). In the following, we approximate ΓII by itsstati value (obtained by passing to frequeny spae andputting all Matsubara frequenies to zero). This approx-imation is justi�ed for energies muh below U where thefrequeny dependene of the loal two-partile vertex isweak. At higher energies, its validity is more di�ult toassess. Introduing

g =
1

2
ΓII|static, (8)we �nally obtain

S = −

∫ β

0

dτdτ ′
∑

r,r′

ψ∗
r (τ)[G−1(r, τ ; r′, τ ′)

+tr,r′δ(τ − τ ′)]ψr′(τ
′) +

g

2

∫ β

0

dτ
∑

r

ψ∗
rψ

∗
rψrψr.(9)The ation (9) is the starting point of our analysis.It is analog to the original ation ∫ β

0
dτ{

∑

r
ψ∗

r
∂τψr +

H [ψ∗, ψ]} with two noteworthy di�erenes: the �free�propagator involves the exat loal propagator G, andthe amplitude of the boson-boson interation is given bythe exat loal two-partile vertex (approximated hereby its stati limit). The ation (9) yields the exat parti-tion funtion Z = Z0

∫

D[ψ∗, ψ]e−S and the exat Greenfuntion −〈ψr(τ)ψ
∗
r′

(τ ′)〉 both in the loal (t = 0) and

non-interating (U = 0) limits.9,10. By means of twosuessive Hubbard-Stratonovih transformations of theintersite hopping term, we have thus performed a partialresummation of interation proesses and obtained an ef-fetive ation whih provides a suitable starting point inthe strong-oupling limit.III. MEAN-FIELD AND GAUSSIANAPPROXIMATIONSIn order to study the Mott and super�uid phasesfrom the strong-oupling e�etive ation (9), we use thestandard Bogoliubov approximation: we �rst perform asaddle-point (or mean-�eld) approximation and then ex-pand the ation (9) to quadrati order in the �utuations.The saddle-point ation is given by
S

Nβ
= −(Ḡ−1 +D)ψ2

0 +
g

2
ψ4

0 , (10)where Ḡ = G(iω = 0), D = zt, andN is the total numberof lattie sites. The saddle-point value ψ0 (assumed here,with no loss of generality, to be real) is obtained from
∂S/∂ψ0 = 0:

ψ2
0 =







Ḡ−1 +D

g
if Ḡ−1 +D > 0,

0 otherwise.
(11)The MI-SF therefore ours when Ḡ−1 + D = 0, inagreement with the results of Appendix C, whih leadsto the phase diagram shown in Fig. 1. Using 〈ψr〉 =

δ lnZ(J∗, J)/δJ∗
r
|J∗=J=0, where Z[J∗, J ] is given byEq. (A1) of appendix A, we obtain φ0 = Dψ0 where

φ0 is the mean value of the auxiliary �eld. Near theMI-SF transition, where Ḡ−1 + D ≈ 0, we then �nd
φ2

0 ≃ 2(D−1 + Ḡ)/ḠIIc in agreement with the result ofAppendix C.To quadrati order in the �utuations ψ̃r = ψr − ψ0,we obtain the ation
S =

1

2

∑

k,ω

(ψ̃∗(k, iω), ψ̃(−k,−iω))

(

−G−1(iω) + ǫk + 2gψ2
0 gψ2

0

gψ2
0 −G−1(−iω) + ǫ−k + 2gψ2

0

) (

ψ̃(k, iω)

ψ̃∗(−k,−iω)

)

, (12)where ψ̃(k, iω) is the Fourier transformed �eld of ψ̃r(τ)and ω a bosoni Matsubara frequeny. ǫk, the Fouriertransform of −tr,r′ , is the boson dispersion in the abseneof the one-site repulsion. A. Mott phase and the MI-SF transitionIn the Mott phase, where ψ0 = 0, the Green's fun-tion G(k, iω) = −〈ψ(k, iω)ψ∗(k, iω)〉 an be diretly reado� from Eq. (12): G−1(k, iω) = G−1(iω) − ǫk. Using



4Eq. (B2), one obtains
G(k, iω) =

1 − zk

iω − E−
k

+
zk

iω − E+
k

. (13)The two exitation energies E±
k

and the spetral weight
zk are de�ned by

E±
k

= −δµ+
ǫk
2

±
1

2

[

ǫ2
k

+ 4ǫkUx+ U2
]1/2

,

zk =
E+

k
+ δµ+ Ux

E+
k
− E−

k

, (14)where x = n0+1/2 and δµ = µ−U(n0−1/2). n0 ≡ n0(µ)is the (integer) number of bosons in the loal limit for ahemial potential µ (see Appendix B).The exitation energies E+
k
,E−

k
, and the orrespond-ing spetral weight zk and 1 − zk, are shown in Figs. 2-3 in the MI n = 1 of a two-dimensional atomi gas ina square optial lattie. The spetrum exhibits a gap

E+
k=0 − E−

k=0 = (D2 − 4DUx + U2)1/2 whih dereasesas U dereases. The MI beomes unstable against su-per�uidity when E+
k=0 = 0 or E−

k=0 = 0, whih agreeswith Eq. (C3) of Appendix C and leads to the phasediagram shown in Fig. 1. The gap E+
k=0 − E−

k=0 =

(D2−4DUx+U2)1/2 loses at the transition if both E+
k=0and E−

k=0 vanish, whih ours at the tip of the Mottlob. The MI-SF transition then takes plae at �xed den-sity, whih is the situation of physial interest. Figs. 2-3 are obtained with a hemial potential δµ = −D/2,whih ensures that the MI-SF transition takes plae at�xed density n = 1 (see Appendix C). The dereasingof the Mott gap is aompanied by an inrease of spe-tral weight at k = 0, whih diverges at the transition.Figs. 2-3 also show the results of the Bogoliubov theory(as applied to the original Hamiltonian (1)). The Bo-goliubov theory always predits the ground-state to besuper�uid.6 Away from k = 0, it provides a good ap-proximation of the negative energy branh E−
k
but givesa poor desription of E+

k
.If we expand the equation E±

k=0 = 0 to order O(t2/U),we obtain
µ− Un0 +D(n0 + 1) +

D2

U
(n2

0 + n0) = 0,

µ− U(n0 − 1) −Dn0 −
D2

U
(n2

0 + n0) = 0, (15)whih di�ers from the energy alulation of Ref. 8 byterms of order O(t2/U). This disrepany results fromthe neglet of the one-loop orretion due to ΓII in thealulation of the Green's funtion [Eq. (13)℄, whih alsogives a ontribution of order O(t2/U). However, evenwithout this term the phase diagram looks qualitativelysimilar to the Freeriks and Monien phase diagram.From the Green's funtion (13), we an also ob-tain the momentum distribution nk = 〈ψ∗
k
ψk〉 =

−
∫ 0

−∞ dωA(k, ω) = 1 − zk. nk measures the spetral
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(solid line) and E−

k(dashed line) in the MI n = 1 for U = 30t. Bottom: Spetralweight zk (solid line) and 1−zk (dashed line). The dotted linesshow the result obtained from the Bogoliubov theory (whihpredits the phase to be super�uid). [Γ = (0, 0), M = (π, π)and X = (π, 0).℄ Results shown in Figs. 2-5 are obtained fora two-dimensional atomi gas in a square optial lattie.
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� M X �FIG. 3: Same as Fig. 2, but for U = 25t.weight of the negative energy E−
k
of the spetrum. Deepin the Mott phase, the momentum distribution is roughly�at. Closer to the MI-SF transition, a peak developsaround k = 0. This peak diverges at the transition(Fig. 4).The ritial theory of the SF-MI transition an be ob-
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kψk〉 in the MI n = 1for U = 30t (top) and U = 25 (bottom).tained from the ation (9) by expanding the inverse prop-agatorG−1(iω)−ǫk to quadrati order in k and ω. Notingthat ∂G−1(iω)/∂(iω)|iω=0 = ∂Ḡ−1/∂µ (and similarly forthe seond-order derivative), we obtain

S =

∫ β

0

dτ

∫

dr
[

r0|ψ
2
r
| +K1ψ

∗
r
∂τψr +K2|∂τψr|

2

+K3|∇ψr|
2 +

u

2
|ψr|

4
]

, (16)where
r0 ∝ Ḡ−1 +D,

K1 ∝
∂r0
∂µ

. (17)At all points on the MI-SF transition line exept at theMott lob tip, r0 vanishes but K1 remains �nite. Theritial theory has then a dynamial exponent z = 2. Atthe tip of the Mott lob where both r0 and K1 vanish, thedynamial exponent z = 1. A similar analysis, based onthe e�etive ation S[φ∗, φ], an be found in Ref. 7.B. Super�uid phaseIn the SF phase (ψ0 6= 0), the Green's funtion ofthe ψ̃ �eld is obtained by inverting the 2 × 2 matrixpropagator in Eq. (12). For the diagonal omponent

G(k, iω) = −〈ψ̃(k, iω)ψ̃∗(k, iω)〉, we obtain
G(k, iω) =

(iω + δµ+ Ux)(iω − z+
k

)(iω − z−
k

)

(ω2 + E+2
k

)(ω2 + E−2
k

)
, (18)where

E±2
k

= −
Bk

2
±

1

2
(B2

k − 4Ck)1/2,

z±
k

=
Ãk

2
±

1

2
(Ã2

k − 4B̃k)1/2,

Ãk = 2δµ− 2(Ḡ−1 +D) − ǫk,

B̃k = −(2Ḡ−1 + 2D + ǫk)(δµ+ Ux) + δµ2 −
U2

4
,

Bk = 2B̃k − Ã2
k

+ (Ḡ−1 +D)2,

Ck = B̃2
k − (Ḡ−1 +D)2(δµ+ Ux)2. (19)From (18), we dedue the spetral funtion A(k, ω) =

− 1
π ImG(k, ω + i0+):
A(k, ω) =

(E+
k

+ δµ+ Ux)(E+
k
− z+

k
)(E+

k
− z−

k
)

2E+
k

(E+2
k

− E−2
k

)
δ(ω − E+

k
)

+
(E+

k
− δµ− Ux)(E+

k
+ z+

k
)(E+

k
+ z−

k
)

2E+
k

(E+2
k

− E−2
k

)
δ(ω + E+

k
)

−
(E−

k
+ δµ+ Ux)(E−

k
− z+

k
)(E−

k
− z−

k
)

2E−
k

(E+2
k

− E−2
k

)
δ(ω − E−

k
)

−
(E−

k
− δµ− Ux)(E−

k
+ z+

k
)(E−

k
+ z−

k
)

2E−
k

(E+2
k

− E−2
k

)
δ(ω + E−

k
).(20)The Green's funtion (18) has the desired physi-al properties. The spetral funtion is normal-ized, ∫ ∞

−∞
dωA(k, ω) = 1, and has the orret sign:

sgn[A(k, ω)] = sgn(ω).13 There are four exitationbranhes ±E±
k
, two of whih (±E−

k
) being gapless for

k → 0 (Fig. 5). However, for a given value of k, onlytwo branhes arry a signi�ant spetral weight. Awayfrom k = 0, the spetral weight is almost ompletely ex-hausted by E+
k

and −E−
k
. In the viinity of k = 0, thetwo gapless branhes ±E−
k

exhaust the spetral weight.By expanding E−
k

in the viinity of k → 0, we �nd alinear spetrum
E−

k
= c|k|, (21)where

c =

[

2t(Ḡ−1 +D)

α2 + 2γ(Ḡ−1 +D)

]1/2

,

α =
δµ2 + 2δµUx+ U2/4

(δµ+ Ux)2
,

γ =
U2(x2 − 1/4)

(δµ+ Ux)3
. (22)
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� M X �FIG. 5: Exitation energies ±E±

k
and spetral weight in theSF phase n = 1 and U = 20.Our strong-oupling approah therefore reprodues theBogoliubov (Goldstone) mode of the SF phase.As disussed in Se. III A, our strong-oupling theoryis not an expansion order by order in t/U . For this rea-son, the omputation of the hemial potential from thesingle-partile Green's funtion, i.e. n = Tr(G), is notreliable. We have therefore used the hemial potentialobtained within the mean-�eld approximation disussedin Appendix C.Fig. 5 also shows the results of the Bogoliubov theory(as applied to the Hamiltonian (1)) for the same hemialpotential µ. The Bogoliubov theory provides a good ap-proximation to E−

k
and therefore to the low-energy partof the exitation spetrum. This implies that the velo-ity of the gapless mode [Eq. (22)℄ an be approximatedby the Bogoliubov result c = [2t(µ+D)]1/2. Away from

k = 0, the Bogoliubov approah gives a rather poor de-sription of E+
k
.The Green's funtion G(k, iω) yields the momentumdistribution

nk = 〈ψ∗
kψk〉

= Nψ2
0δk,0 −

∫ 0

−∞

dωA(k, ω), (23)Apart from the ondensate ontribution Nψ2
0δk,0, themomentum distribution funtion is diretly given by thespetral weight of the negatives energies −E+

k
and −E−

k(Fig. 5).Fig. 6 shows the integrated spetral funtion ρ(ω) =
∫

d2k
(2π)2A(k, ω) for a ommensurate density n = 1. Deepin the Mott phase, ρ(ω) is essentially given by the non-interation density of states of free bosons on the square
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/UFIG. 6: Integrated spetral funtion ρ(ω) =
∫

d2k
(2π)2

A(k, ω) inthe MI n = 1 (µ = U/2 −D/2): U/t = 80 (dashed line), 40(thin solid line)and 23.33 (thik solid line). The transition tothe SF phase ours for U/t ≃ 23.31.lattie entered around −µ and U − µ and with relativespetral weigths −n0 and n0+1. The two peaks near ω =
−µ and ω = U−µ are due to the Van Hove singularities inthe density of states of free bosons. When dereasing thevalue of U/t, the Mott gap dereases and ρ(ω) stronglyinreases at the gap edges. At the ritial value U/t ≃
23.31, the gap loses and ρ(ω) diverges at ω = 0. Thisdivergene persists in the super�uid phase.IV. CONCLUSIONBy performing two suessive Hubbard-Stratonovihtransformations of the intersite hopping term, we haveshown how to derive an e�etive ation whih provides asuitable starting point to study the strong-oupling limitof the Bose-Hubbard model. This ation an then beanalyzed by taking into aount Gaussian �utuationsabout the mean-�eld approximation as in the Bogoliubovtheory of the weakly interating Bose gas. The main im-provement over previous related approahes5,6,7,8 is thepossibility to desribe both the Mott and SF phases.Both in the Mott and SF phases, we ompute the exita-tion spetrum and the momentum distribution. Our ap-proah learly shows how the exitation spetrum, whihis gapped in the MI phase, beomes gapless at the MI-SFtransition.The strong-oupling expansion presented in this papershould in priniple also applies to more ompliated situ-ations where for instane several atom speies are presentin the optial lattie.Note added: after ompleting this paper, we beameaware of two related works. Konabe et al.14 have stud-ied the single-partile exitation spetrum in the Mottphase and obtained results similar to ours. The method



7used by these authors bears some similarities with thestrong-oupling expansion disussed in the present pa-per. Within a slave-boson representation of the Bose-Hubbard model, Dikersheid et. al.15 have disussedboth the Mott and SF phases. Their results agree withours (whenever the omparison is possible).APPENDIX A: HUBBARD-STRATONOVICHTRANSFORMATIONSThe Green's funtions of the boson �eld ψ an be ob-tained from the generating funtion11
Z[J∗, J ] =

∫

D[ψ∗, ψ]e(ψ|tψ)−S0[ψ
∗,ψ]+[(J|ψ)+c.c.], (A1)

where J∗
r
, Jr are external soures. After the Hubbard-Stratonovih deoupling of the intersite hopping term [seeEq. (2)℄ and the shift φ∗ → φ∗ − J∗,φ → φ − J of theauxiliary �eld, we obtain

Z[J∗, J ] =

∫

D[ψ∗, ψ, φ∗, φ]e−(φ−J|t−1(φ−J))+[(φ|ψ)+c.c.]−S0[ψ
∗,ψ]

= Z0

∫

D[φ∗, φ]e−(φ−J|t−1(φ−J))+W [φ∗,φ]. (A2)A seond Hubbard-Stratonovih deoupling of the hopping term (with an auxiliary �eld ψ′) leads to
Z[J∗, J ] = Z0

∫

D[ψ′∗ψ′, φ∗, φ]e(ψ
′|tψ′)−[(ψ′|φ−J)+c.c.]+W [φ∗,φ]

= Z0

∫

D[ψ′∗ψ′, φ∗, φ]e(ψ
′|tψ′)−[(ψ′|φ)+c.c.]+[(ψ′|J)+c.c.]+W [φ∗,φ]. (A3)

From (A3) we dedue that Z[J∗, J ] is also the generatingfuntion of the Green's funtions of the ψ′ �eld. ψ′ antherefore be identi�ed with the original boson �eld ψ.APPENDIX B: CALCULATION OF THE LOCALGREEN'S FUNCTIONS G AND GIIIn the absene of intersite hopping (t = 0), the states
|p〉 = (p!)−1/2(ψ̂†)p|0〉 (p ≥ 0 integer) are eigenstateswith eigenvalues ǫp = −µp+(U/2)p(p−1). [We onsidera single site and therefore drop the site index.℄ |0〉 is thevauum of partiles. This yields the partition funtion
Z0 =

∑∞
p=0 e

−βǫp . In the ground-state, for a given valueof the hemial potential µ, there are n0 bosons per site,where n0 is obtained from ǫn0
= minpǫp. The latterondition leads to n0 − 1 ≤ µ/U ≤ n0 if µ ≥ −U , and

n0 = 0 if µ ≤ −U . Note that n0 is integer (exept when

µ/U = p is integer; the states |p〉 and |p + 1〉 are thendegenerate), even when the boson density n is not.The single-partile Green's funtion G(τ) =

−〈Tτ ψ̂(τ)ψ̂†(0)〉 is easily alulated using the lo-sure relation ∑∞
p=0 |p〉〈p| = 1. For τ > 0, one �nds

G(τ) = −
1

Z0

∞
∑

p=0

(p+ 1)e−(β−τ)ǫp−τǫp+1, (B1)and, in frequeny spae,
G(iω) =

−n0

iω + ǫn0−1 − ǫn0

+
n0 + 1

iω + ǫn0
− ǫn0+1

, (B2)where ω is a bosoni Matsubara frequeny.The two-partile Green's funtion an be alulated inthe same way. One �nds
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GII(τ1, τ2; τ3, τ4 = 0) = 〈Tτ ψ̂(τ1)ψ̂(τ2)ψ̂

†(0)ψ̂†(τ3)〉

=
1

Z0

∞
∑

p=0

e−βǫp
[

(p+ 1)(p+ 2)eτ1(ǫp−ǫp+1)+τ2(ǫp+1−ǫp+2)+τ3(ǫp+2−ǫp+1)θ(τ1 − τ2)θ(τ2 − τ3)

+(p+ 1)(p+ 2)eτ1(ǫp+1−ǫp+2)+τ2(ǫp−ǫp+1)+τ3(ǫp+2−ǫp+1)θ(τ2 − τ1)θ(τ1 − τ3)

+(p+ 1)2eτ1(ǫp−ǫp+1)+τ2(ǫp−ǫp+1)+τ3(ǫp+1−ǫp)[θ(τ1 − τ3)θ(τ3 − τ2) + θ(τ2 − τ3)θ(τ3 − τ1)]

+p(p+ 1)eτ1(ǫp−1−ǫp)+τ2(ǫp−ǫp+1)+τ3(ǫp−ǫp−1)θ(τ3 − τ1)θ(τ1 − τ2)

+p(p+ 1)eτ1(ǫp−ǫp+1)+τ2(ǫp−1−ǫp)+τ3(ǫp−ǫp−1)θ(τ3 − τ2)θ(τ2 − τ1)
]

. (B3)After a somewhat tedious alulation, we obtain for theFourier transform of the onneted part in the statilimit:
ḠIIc =

∫ β

0

dτ1dτ2dτ3G
II(τ1, τ2; τ3, 0) − 2β[G(iω = 0)]2

= −
4(n0 + 1)(n0 + 2)

(2µ− (2n0 + 1)U)(Un0 − µ)2

−
4n0(n0 − 1)

(µ− U(n0 − 1))2(U(2n0 − 3) − 2µ)

+
4n0(n0 + 1)

(µ− Un0)(−µ+ U(n0 − 1))2

+
4n0(n0 + 1)

(µ− Un0)2(−µ+ U(n0 − 1))

+
4n2

0

(−µ+ U(n0 − 1))3

+
4(n0 + 1)2

(µ− Un0)3
. (B4)The stati limit of the two-partile vertex ΓII is equal to

−ḠIIc/Ḡ4.APPENDIX C: AUXILIARY-FIELD MEAN-FIELDAPPROACHIn this appendix, we review the mean-�eld resultsobtained from the ation S[φ∗, φ] [Eq. (5)℄.6 Within asaddle-point approximation, where the �eld φ0 is takenreal and assumed to be time and spae independent, weation beomes
S

Nβ
= (D−1 + Ḡ)φ2

0 −
1

4
ḠIIcφ4

0, (C1)where D = zt. Ḡ and ḠIIc are the single-partile andtwo-partile loal Green's funtions in the stati limit

(see Appendix B). The ground-state energy per site E =
− limβ→∞

1
Nβ lnZ is then given by [see Eq. (2)℄

E = a0 + a2φ
2
0 + a4φ

4
0, (C2)where a0 = − limβ→∞

1
Nβ lnZ0 is the ground-state en-ergy in the loal limit, a2 = D−1 + Ḡ, and a4 = − 1

4 Ḡ
IIc.The mean-�eld value φ0 is obtained by minimizing E. φ0vanishes in the Mott phase (a2 > 0) and takes a �nitevalue in the SF phase (a2 < 0). The MI-SF transition isthen given by a2 = 0, whih leads to

δµ± = −
D

2
±

1

2

[

D2 + U2 − 4DUx
]1/2

, (C3)where n0 is the integer number of bosons in the loallimit for a hemial potential µ (see Appendix B). xand δµ are de�ned in Se. III. For eah value of n0,Eq. (C3) de�nes a Mott lob in the U − µ phase diagram(Fig. 1), whose tip orresponds to δµ+ = δµ− = −zt/2and U/(zt) = 2n0 + 1 + 2(n2
0 + n0)

1/2. At the lob tip,
∂a2/∂µ = 0.In the SF phase, the order parameter φ0 is given by
φ2

0 = −a2/(2a4), and the ground-state energy takes thevalue
E = a0 −

a2
2

4a4
. (C4)From (C4), we dedue the mean boson density

n = −
∂E

∂µ
= n0 +

1

4

∂

∂µ

(

a2
2

a4

)

≃ n0 +
a2

2a4

∂a2

∂µ
, (C5)where the last equality holds near the MI-SF transition(a2 ≈ 0). We have used n0 = −∂a0/∂µ. We onludethat, at the MI-SF transition, the boson density remainspinned at the integer value n0 if ∂a2/∂µ = 0, whih or-responds to the tip of the Mott lob in the µ − U phasediagram (Fig. 1).1 M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsh, and I.Bloh, Nature 415, 39 (2002). 2 T. Stöferle, H. Moritz, C. Shori, M. Köhl, and T.
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