232 research outputs found

    Cryo-electron microscopy of viruses

    Get PDF
    Thin vitrified layers of unfixed, unstained and unsupported virus suspensions can be prepared for observation by cryo-electron microscopy in easily controlled conditions. The viral particles appear free from the kind of damage caused by dehydration, freezing or adsorption to a support that is encountered in preparing biological samples for conventional electron microscopy. Cryo-electron microscopy of vitrified specimens offers possibilities for high resolution observations that compare favourably with any other electron microscopical method

    Fabrication of metallic patterns by microstencil lithography on polymer surfaces suitable as microelectrodes in integrated microfluidic systems

    Get PDF
    Microstencil lithography, i.e. local deposition of micrometer scale patterns through small shadow masks, is a promising method for metal micropattern definition on polymer substrates that cannot be structured using organic-solvent-based photoresist technology. We propose to apply microstencil lithography to fabricate microelectrodes on flat and 3D polymer substrates, such as PMMA or SU-8, which form parts of microfluidic systems with integrated microelectrodes. Microstencil lithography is accompanied by two main issues when considered for application as a low-cost, reproducible alternative to standard photolithography on polymer substrates. In this paper we assess in detail (i) the reduction of aperture size (clogging) after several metal evaporation steps and corresponding change of deposited pattern size and (ii) loss in the resolution (blurring) of the deposited microstructures when there is a several micrometers large gap between the stencil membrane and the substrate. The clogging of stencil apertures induced by titanium and copper evaporation was checked after each evaporation step, and it was determined that approximately 50% of the thickness of the evaporated metals was deposited on the side walls of the stencil apertures. The influence of a gap on the deposited structures was analyzed by using 18 um thick SU-8 spacers placed between the microstencil and the substrate. The presence of an 18 um gapmade the deposited structures notably blurred. The blurring mechanism of deposited structures is discussed based on a simplified geometrical model. The results obtained in this paper allow assessing the feasibility of using stencil-based lithography for unconventional surface patterning, which shows the limits of the proposed method, but also provides a guideline on a possible implementation for combined polymer-electrode microsystems, where standard photoresist technology fails

    Toward visualization of nanomachines in their native cellular environment

    Get PDF
    The cellular nanocosm is made up of numerous types of macromolecular complexes or biological nanomachines. These form functional modules that are organized into complex subcellular networks. Information on the ultra-structure of these nanomachines has mainly been obtained by analyzing isolated structures, using imaging techniques such as X-ray crystallography, NMR, or single particle electron microscopy (EM). Yet there is a strong need to image biological complexes in a native state and within a cellular environment, in order to gain a better understanding of their functions. Emerging methods in EM are now making this goal reachable. Cryo-electron tomography bypasses the need for conventional fixatives, dehydration and stains, so that a close-to-native environment is retained. As this technique is approaching macromolecular resolution, it is possible to create maps of individual macromolecular complexes. X-ray and NMR data can be ‘docked’ or fitted into the lower resolution particle density maps to create a macromolecular atlas of the cell under normal and pathological conditions. The majority of cells, however, are too thick to be imaged in an intact state and therefore methods such as ‘high pressure freezing’ with ‘freeze-substitution followed by room temperature plastic sectioning’ or ‘cryo-sectioning of unperturbed vitreous fully hydrated samples’ have been introduced for electron tomography. Here, we review methodological considerations for visualizing nanomachines in a close-to-physiological, cellular context. EM is in a renaissance, and further innovations and training in this field should be fully supported

    An All-Atom Model of the Chromatin Fiber Containing Linker Histones Reveals a Versatile Structure Tuned by the Nucleosomal Repeat Length

    Get PDF
    In the nucleus of eukaryotic cells, histone proteins organize the linear genome into a functional and hierarchical architecture. In this paper, we use the crystal structures of the nucleosome core particle, B-DNA and the globular domain of H5 linker histone to build the first all-atom model of compact chromatin fibers. In this 3D jigsaw puzzle, DNA bending is achieved by solving an inverse kinematics problem. Our model is based on recent electron microscopy measurements of reconstituted fiber dimensions. Strikingly, we find that the chromatin fiber containing linker histones is a polymorphic structure. We show that different fiber conformations are obtained by tuning the linker histone orientation at the nucleosomes entry/exit according to the nucleosomal repeat length. We propose that the observed in vivo quantization of nucleosomal repeat length could reflect nature's ability to use the DNA molecule's helical geometry in order to give chromatin versatile topological and mechanical properties

    Assembly and structural analysis of a covalently closed nano-scale DNA cage

    Get PDF
    The inherent properties of DNA as a stable polymer with unique affinity for partner molecules determined by the specific Watson–Crick base pairing makes it an ideal component in self-assembling structures. This has been exploited for decades in the design of a variety of artificial substrates for investigations of DNA-interacting enzymes. More recently, strategies for synthesis of more complex two-dimensional (2D) and 3D DNA structures have emerged. However, the building of such structures is still in progress and more experiences from different research groups and different fields of expertise are necessary before complex DNA structures can be routinely designed for the use in basal science and/or biotechnology. Here we present the design, construction and structural analysis of a covalently closed and stable 3D DNA structure with the connectivity of an octahedron, as defined by the double-stranded DNA helices that assembles from eight oligonucleotides with a yield of ∌30%. As demonstrated by Small Angle X-ray Scattering and cryo-Transmission Electron Microscopy analyses the eight-stranded DNA structure has a central cavity larger than the apertures in the surrounding DNA lattice and can be described as a nano-scale DNA cage, Hence, in theory it could hold proteins or other bio-molecules to enable their investigation in certain harmful environments or even allow their organization into higher order structures
    • 

    corecore