20 research outputs found

    Stimuli-Responsive Polymers

    No full text

    The development of stable aqueous suspensions of PEGylated SPIONs for biomedical applications

    No full text
    International audienceWe report here the development of stable aqueous suspensions of biocompatible superparamagnetic iron oxide nanoparticles (SPIONs). These so-called ferrofluids are useful in a large spectrum of modern biomedical applications, including novel diagnostic tools and targeted therapeutics. In order to provide prolonged circulation times for the nanoparticles in vivo, the initial iron oxide nanoparticles were coated with a biocompatible polymer poly(ethylene glycol) (PEG). To permit covalent bonding of PEG to the SPION surface, the latter was functionalized with a coupling agent, 3-aminopropyltrimethoxysilane (APS). This novel method of SPION PEGylation has been reproduced in numerous independent preparations. At each preparation step, particular attention was paid to determine the physico-chemical characteristics of the samples using a number of analytical techniques such as atomic absorption, Fourier transform infrared (FT-IR) spectroscopy and Raman spectroscopy, transmission electron microscopy (TEM), photon correlation spectroscopy (PCS, used for hydrodynamic diameter and zeta potential measurements) and magnetization measurements. The results confirm that aqueous suspensions of PEGylated SPIONs are stabilized by steric hindrance over a wide pH range between pH 4 and 10. Furthermore, the fact that the nanoparticle surface is nearly neutral is in agreement with immunological stealthiness expected for the future biomedical applications in vivo

    The development of stable aqueous suspensions of PEGylated SPIONs for biomedical applications

    No full text
    International audienceWe report here the development of stable aqueous suspensions of biocompatible superparamagnetic iron oxide nanoparticles (SPIONs). These so-called ferrofluids are useful in a large spectrum of modern biomedical applications, including novel diagnostic tools and targeted therapeutics. In order to provide prolonged circulation times for the nanoparticles in vivo, the initial iron oxide nanoparticles were coated with a biocompatible polymer poly(ethylene glycol) (PEG). To permit covalent bonding of PEG to the SPION surface, the latter was functionalized with a coupling agent, 3-aminopropyltrimethoxysilane (APS). This novel method of SPION PEGylation has been reproduced in numerous independent preparations. At each preparation step, particular attention was paid to determine the physico-chemical characteristics of the samples using a number of analytical techniques such as atomic absorption, Fourier transform infrared (FT-IR) spectroscopy and Raman spectroscopy, transmission electron microscopy (TEM), photon correlation spectroscopy (PCS, used for hydrodynamic diameter and zeta potential measurements) and magnetization measurements. The results confirm that aqueous suspensions of PEGylated SPIONs are stabilized by steric hindrance over a wide pH range between pH 4 and 10. Furthermore, the fact that the nanoparticle surface is nearly neutral is in agreement with immunological stealthiness expected for the future biomedical applications in vivo

    Surface Charge and Coating of CoFe2O4 Nanoparticles: Evidence of Preserved Magnetic and Electronic Properties

    Get PDF
    Magnetic nanoparticles (MNPs) have shown exceptional potential for several biological and clinical applications. However, MNPs must be coated by a biocompatible shell for such applications. The aim of this study is to understand if and how the surface charge and coating can affect the electronic and magnetic properties of CoFe2O4 MNPs. The role of the surface on the total magnetic moment of MNPs is a controversial issue, and several effects can contribute to make it deviate from the bulk value, including the charge, the nature of the coating, and also the synthetic technique. Positively and negatively charged uncoated CoFe2O4 NPs as well as citrate-coated NPs were prepared by soft chemistry synthesis. The electronic properties and cationic distribution of CoFe2O4 NPs were probed by X-ray absorption spectroscopy (XAS), X-ray magnetic circular dichroism (XMCD), and X-ray photoemission spectroscopy (XPS) techniques and confirmed by theoretical simulations. The overall magnetic behavior and the hyperthermic properties were evaluated by magnetometry and calorimetric measurements, respectively. The results show that all of the investigated CoFe2O4 NPs have high magnetic anisotropy energy, and the surface charge and coating do not influence appreciably their electronic and magnetic properties. In addition, the citrate shell improves the stability of the NPs in aqueous environment, making CoFe2O4 NPs suitable for biomedical applications
    corecore