985 research outputs found

    Modelización de datos de supervivencia en nidos: estudio comparativo de varios métodos desarrollados recientemente que pueden implementarse en MARK y SAS

    Get PDF
    Estimating nest success and evaluating factors potentially related to the survival rates of nests are key aspects of many studies of avian populations. A strong interest in nest success has led to a rich literature detailing a variety of estimation methods for this vital rate. In recent years, modeling approaches have undergone especially rapid development. Despite these advances, most researchers still employ Mayfield’s ad–hoc method (Mayfield, 1961) or, in some cases, the maximum–likelihood estimator of Johnson (1979) and Bart & Robson (1982). Such methods permit analyses of stratified data but do not allow for more complex and realistic models of nest survival rate that include covariates that vary by individual, nest age, time, etc. and that may be continuous or categorical. Methods that allow researchers to rigorously assess the importance of a variety of biological factors that might affect nest survival rates can now be readily implemented in Program MARK and in SAS’s Proc GENMOD and Proc NLMIXED. Accordingly, use of Mayfield’s estimator without first evaluating the need for more complex models of nest survival rate cannot be justified. With the goal of increasing the use of more flexible methods, we first describe the likelihood used for these models and then consider the question of what the effective sample size is for computation of AICc. Next, we consider the advantages and disadvantages of these different programs in terms of ease of data input and model construction; utility/flexibility of generated estimates and predictions; ease of model selection; and ability to estimate variance components. An example data set is then analyzed using both MARK and SAS to demonstrate implementation of the methods with various models that contain nest–, group– (or block–), and time–specific covariates. Finally, we discuss improvements that would, if they became available, promote a better general understanding of nest survival rates.La estimación del éxito de nidificación y la evaluación de los factores potencialmente relacionados con las tasas de supervivencia de los mismos son aspectos clave de numerosos estudios sobre poblaciones de aves. El gran interés por el éxito de nidificación se ha traducido en una rica literatura que detalla varios métodos de estimación de esta tasa vital. En los últimos años, los enfoques de modelización han experimentado un rápido desarrollo. No obstante, pese a estos avances, la mayoría de los investigadores siguen empleando el método ad–hoc de Mayfield (Mayfield, 1961) o, en algunos casos, el estimador de probabilidad máxima de Johnson (1979) y Bart & Robson (1982). Tales métodos permiten el análisis de datos estratificados, pero, en cambio, no permiten modelos más complejos y realistas de la tasa de supervivencia en nidos cuando se incluyen covariantes que cambian según el individuo, la edad del nido, el tiempo, etc., y que pueden ser continuas o categóricas. Actualmente, con la ayuda de Program MARK, así como de Proc GENMOD y Proc NLMIXED de SAS, es posible implementar métodos que permiten a los investigadores evaluar rigurosamente la importancia de varios factores biológicos susceptibles de incidir en las tasas de supervivencia en nidos. Por consiguiente, no está justificada la utilización del estimador de Mayfield sin antes evaluar la necesidad de emplear modelos más complejos para determinar la tasa de supervivencia en nidos. Con objeto de incrementar el empleo de métodos más flexibles, primero describimos la probabilidad empleada para estos modelos, para posteriormente tomar en consideración cuál es el tamaño de muestra eficaz para el cálculo de AICc. Seguidamente, tomamos en consideración las ventajas y desventajas de estos programas por lo que respecta a la facilidad de introducción de datos y de construcción de modelos, la utilidad/flexibilidad de las estimaciones y predicciones generadas, la facilidad de la selección de modelos y la capacidad para estimar los componentes de la varianza. A continuación, analizamos un conjunto de datos de ejemplo utilizando los programas MARK y SAS con objeto de demostrar la implementación de los métodos con varios modelos que contienen nido–, grupo– (o bloque–), y covariantes específicas al tiempo. Por último, comentamos varias mejoras que, si estuvieran disponibles, fomentarían una mejor comprensión general de las tasas de supervivencia en nidos

    Hard Spheres in Vesicles: Curvature-Induced Forces and Particle-Induced Curvature

    Get PDF
    We explore the interplay of membrane curvature and nonspecific binding due to excluded-volume effects among colloidal particles inside lipid bilayer vesicles. We trapped submicron spheres of two different sizes inside a pear-shaped, multilamellar vesicle and found the larger spheres to be pinned to the vesicle's surface and pushed in the direction of increasing curvature. A simple model predicts that hard spheres can induce shape changes in flexible vesicles. The results demonstrate an important relationship between the shape of a vesicle or pore and the arrangement of particles within it.Comment: LaTeX with epsfig; ps available at http://dept.physics.upenn.edu/~nelson/index.shtml Phys Rev Lett in press (1997

    The effect of curvature and topology on membrane hydrodynamics

    Full text link
    We study the mobility of extended objects (rods) on a spherical liquid-liquid interface to show how this quantity is modified in a striking manner by both the curvature and the topology of the interface. We present theoretical calculations and experimental measurements of the interfacial fluid velocity field around a moving rod bound to the crowded interface of a water-in-oil droplet. By using different droplet sizes, membrane viscosities, and rod lengths, we show that the viscosity mismatch between the interior and exterior fluids leads to a suppression of the fluid flow on small droplets that cannot be captured by the flat interface predictions.Comment: 4 pages, 3 figure

    Depletion forces near curved surfaces

    Full text link
    Based on density functional theory the influence of curvature on the depletion potential of a single big hard sphere immersed in a fluid of small hard spheres with packing fraction \eta_s either inside or outside of a hard spherical cavity of radius R_c is calculated. The relevant features of this potential are analyzed as function of \eta_s and R_c. There is a very slow convergence towards the flat wall limit R_c \to \infty. Our results allow us to discuss the strength of depletion forces acting near membranes both in normal and lateral directions and to make contact with recent experimental results

    Direct visualization of aging in colloidal glasses

    Full text link
    We use confocal microscopy to directly visualize the dynamics of aging colloidal glasses. We prepare a colloidal suspension at high density, a simple model system which shares many properties with other glasses, and initiate experiments by stirring the sample. We follow the motion of several thousand colloidal particles after the stirring and observe that their motion significantly slows as the sample ages. The aging is both spatially and temporally heterogeneous. Furthermore, while the characteristic relaxation time scale grows with the age of the sample, nontrivial particle motions continue to occur on all time scales.Comment: submitted to proceedings for Liquid Matter Conference 200

    Dynamic heterogeneities in attractive colloids

    Full text link
    We study the formation of a colloidal gel by means of Molecular Dynamics simulations of a model for colloidal suspensions. A slowing down with gel-like features is observed at low temperatures and low volume fractions, due to the formation of persistent structures. We show that at low volume fraction the dynamic susceptibility, which describes dynamic heterogeneities, exhibits a large plateau, dominated by clusters of long living bonds. At higher volume fraction, where the effect of the crowding of the particles starts to be present, it crosses over towards a regime characterized by a peak. We introduce a suitable mean cluster size of clusters of monomers connected by "persistent" bonds which well describes the dynamic susceptibility.Comment: 4 pages, 4 figure

    Charge-Reversal Instability in Mixed Bilayer Vesicles

    Full text link
    Bilayer vesicles form readily from mixtures of charged and neutral surfactants. When such a mixed vesicle binds an oppositely-charged object, its membrane partially demixes: the adhesion zone recruits more charged surfactants from the rest of the membrane. Given an unlimited supply of adhering objects one might expect the vesicle to remain attractive until it was completely covered. Contrary to this expectation, we show that a vesicle can instead exhibit {\it adhesion saturation,} partitioning spontaneously into an attractive zone with definite area fraction, and a repulsive zone. The latter zone rejects additional incoming objects because counterions on the interior of the vesicle migrate there, effectively reversing the membrane's charge. The effect is strongest at high surface charge densities, low ionic strength, and with thin, impermeable membranes. Adhesion saturation in such a situation has recently been observed experimentally [H. Aranda-Espinoza {\it et al.}, {\sl Science} {\bf285} 394--397 (1999)]

    Measuring every particle's size from three-dimensional imaging experiments

    Full text link
    Often experimentalists study colloidal suspensions that are nominally monodisperse. In reality these samples have a polydispersity of 4-10%. At the level of an individual particle, the consequences of this polydispersity are unknown as it is difficult to measure an individual particle size from microscopy. We propose a general method to estimate individual particle radii within a moderately concentrated colloidal suspension observed with confocal microscopy. We confirm the validity of our method by numerical simulations of four major systems: random close packing, colloidal gels, nominally monodisperse dense samples, and nominally binary dense samples. We then apply our method to experimental data, and demonstrate the utility of this method with results from four case studies. In the first, we demonstrate that we can recover the full particle size distribution {\it in situ}. In the second, we show that accounting for particle size leads to more accurate structural information in a random close packed sample. In the third, we show that crystal nucleation occurs in locally monodisperse regions. In the fourth, we show that particle mobility in a dense sample is correlated to the local volume fraction.Comment: 7 pages, 5 figure

    Understanding depletion forces beyond entropy

    Full text link
    The effective interaction energy of a colloidal sphere in a suspension containing small amounts of non-ionic polymers and a flat glass surface has been measured and calculated using total internal reflection microscopy (TIRM) and a novel approach within density functional theory (DFT), respectively. Quantitative agreement between experiment and theory demonstrates that the resulting repulsive part of the depletion forces cannot be interpreted entirely in terms of entropic arguments but that particularly at small distances (\lesssim 100 nm) attractive dispersion forces have to be taken into account

    Controlled interfacial assembly of 2D curved colloidal crystals and jammed shells

    Full text link
    Assembly of colloidal particles on fluid interfaces is a promising technique for synthesizing two-dimensional micro-crystalline materials useful in fields as diverse as biomedicine1, materials science2, mineral flotation3 and food processing4. Current approaches rely on bulk emulsification methods, require further chemical and thermal treatments, and are restrictive with respect to the materials employed5-9. The development of methods that exploit the great potential of interfacial assembly for producing tailored materials have been hampered by the lack of understanding of the assembly process. Here we report a microfluidic method that allows direct visualization and understanding of the dynamics of colloidal crystal growth on curved interfaces. The crystals are periodically ejected to form stable jammed shells, which we refer to as colloidal armour. We propose that the energetic barriers to interfacial crystal growth and organization can be overcome by targeted delivery of colloidal particles through hydrodynamic flows. Our method allows an unprecedented degree of control over armour composition, size and stability.Comment: 18 pages, 5 figure
    corecore