985 research outputs found
Modelización de datos de supervivencia en nidos: estudio comparativo de varios métodos desarrollados recientemente que pueden implementarse en MARK y SAS
Estimating nest success and evaluating factors potentially related to the survival rates of nests are key aspects of many studies of avian populations. A strong interest in nest success has led to a rich literature detailing a variety of estimation methods for this vital rate. In recent years, modeling approaches have undergone especially rapid development. Despite these advances, most researchers still employ Mayfield’s ad–hoc method (Mayfield, 1961) or, in some cases, the maximum–likelihood estimator of Johnson (1979) and Bart & Robson (1982). Such methods permit analyses of stratified data but do not allow for more complex and realistic models of nest survival rate that include covariates that vary by individual, nest age, time, etc. and that may be continuous or categorical. Methods that allow researchers to rigorously assess the importance of a variety of biological factors that might affect nest survival rates can now be readily implemented in Program MARK and in SAS’s Proc GENMOD and Proc NLMIXED. Accordingly, use of Mayfield’s estimator without first evaluating the need for more complex models of nest survival rate cannot be justified. With the goal of increasing the use of more flexible methods, we first describe the likelihood used for these models and then consider the question of what the effective sample size is for computation of AICc. Next, we consider the advantages and disadvantages of these different programs in terms of ease of data input and model construction; utility/flexibility of generated estimates and predictions; ease of model selection; and ability to estimate variance components. An example data set is then analyzed using both MARK and SAS to demonstrate implementation of the methods with various models that contain nest–, group– (or block–), and time–specific covariates. Finally, we discuss improvements that would, if they became available, promote a better general understanding of nest survival rates.La estimación del éxito de nidificación y la evaluación de los factores potencialmente relacionados con las tasas de supervivencia de los mismos son aspectos clave de numerosos estudios sobre poblaciones de aves. El gran interés por el éxito de nidificación se ha traducido en una rica literatura que detalla varios métodos de estimación de esta tasa vital. En los últimos años, los enfoques de modelización han experimentado un rápido desarrollo. No obstante, pese a estos avances, la mayoría de los investigadores siguen empleando el método ad–hoc de Mayfield (Mayfield, 1961) o, en algunos casos, el estimador de probabilidad máxima de Johnson (1979) y Bart & Robson (1982). Tales métodos permiten el análisis de datos estratificados, pero, en cambio, no permiten modelos más complejos y realistas de la tasa de supervivencia en nidos cuando se incluyen covariantes que cambian según el individuo, la edad del nido, el tiempo, etc., y que pueden ser continuas o categóricas. Actualmente, con la ayuda de Program MARK, así como de Proc GENMOD y Proc NLMIXED de SAS, es posible implementar métodos que permiten a los investigadores evaluar rigurosamente la importancia de varios factores biológicos susceptibles de incidir en las tasas de supervivencia en nidos. Por consiguiente, no está justificada la utilización del estimador de Mayfield sin antes evaluar la necesidad de emplear modelos más complejos para determinar la tasa de supervivencia en nidos. Con objeto de incrementar el empleo de métodos más flexibles, primero describimos la probabilidad empleada para estos modelos, para posteriormente tomar en consideración cuál es el tamaño de muestra eficaz para el cálculo de AICc. Seguidamente, tomamos en consideración las ventajas y desventajas de estos programas por lo que respecta a la facilidad de introducción de datos y de construcción de modelos, la utilidad/flexibilidad de las estimaciones y predicciones generadas, la facilidad de la selección de modelos y la capacidad para estimar los componentes de la varianza. A continuación, analizamos un conjunto de datos de ejemplo utilizando los programas MARK y SAS con objeto de demostrar la implementación de los métodos con varios modelos que contienen nido–, grupo– (o bloque–), y covariantes específicas al tiempo. Por último, comentamos varias mejoras que, si estuvieran disponibles, fomentarían una mejor comprensión general de las tasas de supervivencia en nidos
Hard Spheres in Vesicles: Curvature-Induced Forces and Particle-Induced Curvature
We explore the interplay of membrane curvature and nonspecific binding due to
excluded-volume effects among colloidal particles inside lipid bilayer
vesicles. We trapped submicron spheres of two different sizes inside a
pear-shaped, multilamellar vesicle and found the larger spheres to be pinned to
the vesicle's surface and pushed in the direction of increasing curvature. A
simple model predicts that hard spheres can induce shape changes in flexible
vesicles. The results demonstrate an important relationship between the shape
of a vesicle or pore and the arrangement of particles within it.Comment: LaTeX with epsfig; ps available at
http://dept.physics.upenn.edu/~nelson/index.shtml Phys Rev Lett in press
(1997
The effect of curvature and topology on membrane hydrodynamics
We study the mobility of extended objects (rods) on a spherical liquid-liquid
interface to show how this quantity is modified in a striking manner by both
the curvature and the topology of the interface. We present theoretical
calculations and experimental measurements of the interfacial fluid velocity
field around a moving rod bound to the crowded interface of a water-in-oil
droplet. By using different droplet sizes, membrane viscosities, and rod
lengths, we show that the viscosity mismatch between the interior and exterior
fluids leads to a suppression of the fluid flow on small droplets that cannot
be captured by the flat interface predictions.Comment: 4 pages, 3 figure
Depletion forces near curved surfaces
Based on density functional theory the influence of curvature on the
depletion potential of a single big hard sphere immersed in a fluid of small
hard spheres with packing fraction \eta_s either inside or outside of a hard
spherical cavity of radius R_c is calculated. The relevant features of this
potential are analyzed as function of \eta_s and R_c. There is a very slow
convergence towards the flat wall limit R_c \to \infty. Our results allow us to
discuss the strength of depletion forces acting near membranes both in normal
and lateral directions and to make contact with recent experimental results
Direct visualization of aging in colloidal glasses
We use confocal microscopy to directly visualize the dynamics of aging
colloidal glasses. We prepare a colloidal suspension at high density, a simple
model system which shares many properties with other glasses, and initiate
experiments by stirring the sample. We follow the motion of several thousand
colloidal particles after the stirring and observe that their motion
significantly slows as the sample ages. The aging is both spatially and
temporally heterogeneous. Furthermore, while the characteristic relaxation time
scale grows with the age of the sample, nontrivial particle motions continue to
occur on all time scales.Comment: submitted to proceedings for Liquid Matter Conference 200
Dynamic heterogeneities in attractive colloids
We study the formation of a colloidal gel by means of Molecular Dynamics
simulations of a model for colloidal suspensions. A slowing down with gel-like
features is observed at low temperatures and low volume fractions, due to the
formation of persistent structures. We show that at low volume fraction the
dynamic susceptibility, which describes dynamic heterogeneities, exhibits a
large plateau, dominated by clusters of long living bonds. At higher volume
fraction, where the effect of the crowding of the particles starts to be
present, it crosses over towards a regime characterized by a peak. We introduce
a suitable mean cluster size of clusters of monomers connected by "persistent"
bonds which well describes the dynamic susceptibility.Comment: 4 pages, 4 figure
Charge-Reversal Instability in Mixed Bilayer Vesicles
Bilayer vesicles form readily from mixtures of charged and neutral
surfactants. When such a mixed vesicle binds an oppositely-charged object, its
membrane partially demixes: the adhesion zone recruits more charged surfactants
from the rest of the membrane. Given an unlimited supply of adhering objects
one might expect the vesicle to remain attractive until it was completely
covered. Contrary to this expectation, we show that a vesicle can instead
exhibit {\it adhesion saturation,} partitioning spontaneously into an
attractive zone with definite area fraction, and a repulsive zone. The latter
zone rejects additional incoming objects because counterions on the interior of
the vesicle migrate there, effectively reversing the membrane's charge. The
effect is strongest at high surface charge densities, low ionic strength, and
with thin, impermeable membranes. Adhesion saturation in such a situation has
recently been observed experimentally [H. Aranda-Espinoza {\it et al.}, {\sl
Science} {\bf285} 394--397 (1999)]
Measuring every particle's size from three-dimensional imaging experiments
Often experimentalists study colloidal suspensions that are nominally
monodisperse. In reality these samples have a polydispersity of 4-10%. At the
level of an individual particle, the consequences of this polydispersity are
unknown as it is difficult to measure an individual particle size from
microscopy. We propose a general method to estimate individual particle radii
within a moderately concentrated colloidal suspension observed with confocal
microscopy. We confirm the validity of our method by numerical simulations of
four major systems: random close packing, colloidal gels, nominally
monodisperse dense samples, and nominally binary dense samples. We then apply
our method to experimental data, and demonstrate the utility of this method
with results from four case studies. In the first, we demonstrate that we can
recover the full particle size distribution {\it in situ}. In the second, we
show that accounting for particle size leads to more accurate structural
information in a random close packed sample. In the third, we show that crystal
nucleation occurs in locally monodisperse regions. In the fourth, we show that
particle mobility in a dense sample is correlated to the local volume fraction.Comment: 7 pages, 5 figure
Understanding depletion forces beyond entropy
The effective interaction energy of a colloidal sphere in a suspension
containing small amounts of non-ionic polymers and a flat glass surface has
been measured and calculated using total internal reflection microscopy (TIRM)
and a novel approach within density functional theory (DFT), respectively.
Quantitative agreement between experiment and theory demonstrates that the
resulting repulsive part of the depletion forces cannot be interpreted entirely
in terms of entropic arguments but that particularly at small distances
( 100 nm) attractive dispersion forces have to be taken into account
Controlled interfacial assembly of 2D curved colloidal crystals and jammed shells
Assembly of colloidal particles on fluid interfaces is a promising technique
for synthesizing two-dimensional micro-crystalline materials useful in fields
as diverse as biomedicine1, materials science2, mineral flotation3 and food
processing4. Current approaches rely on bulk emulsification methods, require
further chemical and thermal treatments, and are restrictive with respect to
the materials employed5-9. The development of methods that exploit the great
potential of interfacial assembly for producing tailored materials have been
hampered by the lack of understanding of the assembly process. Here we report a
microfluidic method that allows direct visualization and understanding of the
dynamics of colloidal crystal growth on curved interfaces. The crystals are
periodically ejected to form stable jammed shells, which we refer to as
colloidal armour. We propose that the energetic barriers to interfacial crystal
growth and organization can be overcome by targeted delivery of colloidal
particles through hydrodynamic flows. Our method allows an unprecedented degree
of control over armour composition, size and stability.Comment: 18 pages, 5 figure
- …
