Bilayer vesicles form readily from mixtures of charged and neutral
surfactants. When such a mixed vesicle binds an oppositely-charged object, its
membrane partially demixes: the adhesion zone recruits more charged surfactants
from the rest of the membrane. Given an unlimited supply of adhering objects
one might expect the vesicle to remain attractive until it was completely
covered. Contrary to this expectation, we show that a vesicle can instead
exhibit {\it adhesion saturation,} partitioning spontaneously into an
attractive zone with definite area fraction, and a repulsive zone. The latter
zone rejects additional incoming objects because counterions on the interior of
the vesicle migrate there, effectively reversing the membrane's charge. The
effect is strongest at high surface charge densities, low ionic strength, and
with thin, impermeable membranes. Adhesion saturation in such a situation has
recently been observed experimentally [H. Aranda-Espinoza {\it et al.}, {\sl
Science} {\bf285} 394--397 (1999)]