Abstract

Bilayer vesicles form readily from mixtures of charged and neutral surfactants. When such a mixed vesicle binds an oppositely-charged object, its membrane partially demixes: the adhesion zone recruits more charged surfactants from the rest of the membrane. Given an unlimited supply of adhering objects one might expect the vesicle to remain attractive until it was completely covered. Contrary to this expectation, we show that a vesicle can instead exhibit {\it adhesion saturation,} partitioning spontaneously into an attractive zone with definite area fraction, and a repulsive zone. The latter zone rejects additional incoming objects because counterions on the interior of the vesicle migrate there, effectively reversing the membrane's charge. The effect is strongest at high surface charge densities, low ionic strength, and with thin, impermeable membranes. Adhesion saturation in such a situation has recently been observed experimentally [H. Aranda-Espinoza {\it et al.}, {\sl Science} {\bf285} 394--397 (1999)]

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 26/03/2019