237 research outputs found

    Standardizing methods and procedures for mouse retinal flat mounts and glial cell counts

    Get PDF
    poster abstractIntroduction: The mammalian retina contains neuronal cells as well as a number of non-neuronal glial cells. The different types of glial cells include Müller glia, retinal astrocytes, and microglia. Müller glial cells and astrocytes nourish neurons and microglia act as sentinels that respond to injury or disease within the nervous system. The long-term goal of our laboratory has been to study interactions between microglia, Muller glia and astrocytes in healthy and diseased tissue. The focus of the present study was to develop a technique that would allow the laboratory to study changes in cell number in retinal flat mounts and cultures. Methods: Immunohistochemistry (IHC) was performed to fluorescently label mature murine retinal tissue. Retinal flat-mounts were stained with SOX2, a nuclear marker for glial cells or IBA1 for microglial cells, and counter-stained with Hoechst solution to label all nuclei. Pure cultures of mouse microglial cells treated with liposomal clodronate (a drug which specifically targets and ablates microglia) and vehicle were counter stained with Hoechst solution. Cell counts were performed on the images of the fluorescently labeled samples using Image-J software. Results: Convolutions were used to filter images of immunolabeled cultures and retinal flat mounts to make the images clear enough to capture cell number. The cell count assistance protocol yielded acceptable cell count results of the stained cells and determined a detectable difference in the number of clodronate treated cells versus vehicle treated control cells. The images produced of the retinal flat-mounts were analyzed to determine the percentage of SOX2 positive Müller glia in the mature murine retinal tissue. Conclusion: A modified Image J program could be used to determine cellular number in cultures and retinal flat mounts. Mentor: Teri L Belecky-Adams, Department of Biology, Indiana University-Purdue University Indianapoli

    Microglia activation is essential for BMP7-mediated retinal reactive gliosis

    Get PDF
    Our previous studies have shown that BMP7 is able to trigger activation of retinal macroglia. However, these studies showed the responsiveness of Müller glial cells and retinal astrocytes in vitro was attenuated in comparison to those in vivo, indicating other retinal cell types may be mediating the response of the macroglial cells to BMP7. In this study, we test the hypothesis that BMP7-mediated gliosis is the result of inflammatory signaling from retinal microglia

    Histone deacetylase expression patterns in developing murine optic nerve

    Get PDF
    BACKGROUND: Histone deacetylases (HDACs) play important roles in glial cell development and in disease states within multiple regions of the central nervous system. However, little is known about HDAC expression or function within the optic nerve. As a first step in understanding the role of HDACs in optic nerve, this study examines the spatio-temporal expression patterns of methylated histone 3 (K9), acetylated histone 3 (K18), and HDACs 1–6 and 8–11 in the developing murine optic nerve head. RESULTS: Using RT-qPCR, western blot and immunofluorescence, three stages were analyzed: embryonic day 16 (E16), when astrocyte precursors are found in the optic stalk, postnatal day 5 (P5), when immature astrocytes and oligodendrocytes are found throughout the optic nerve, and P30, when optic nerve astrocytes and oligodendrocytes are mature. Acetylated and methylated histone H3 immunoreactivity was co-localized in the nuclei of most SOX2 positive glia within the optic nerve head and adjacent optic nerve at all developmental stages. HDACs 1–11 were expressed in the optic nerve glial cells at all three stages of optic nerve development in the mouse, but showed temporal differences in overall levels and subcellular localization. HDACs 1 and 2 were predominantly nuclear throughout optic nerve development and glial cell maturation. HDACs 3, 5, 6, 8, and 11 were predominantly cytoplasmic, but showed nuclear localization in at least one stage of optic nerve development. HDACs 4, 9 and10 were predominantly cytoplasmic, with little to no nuclear expression at any time during the developmental stages examined. CONCLUSIONS: Our results showing that HDACs 1, 2, 3, 5, 6, 8, and 11 were each localized to the nuclei of SOX2 positive glia at some stages of optic nerve development and maturation and extend previous reports of HDAC expression in the aging optic nerve. These HDACs are candidates for further research to understand how chromatin remodeling through acetylation, deacetylation and methylation contributes to glial development as well as their injury response

    Class I histone deacetylases in retinal progenitors and differentiating ganglion cells

    Get PDF
    Background The acetylation state of histones has been used as an indicator of the developmental state of progenitor and differentiating cells. The goal of this study was to determine the nuclear localization patterns of Class I histone deacetylases (HDACs) in retinal progenitor cells (RPCs) and retinal ganglion cells (RGCs), as the first step in understanding their potential importance in cell fate determination within the murine retina. Results The only HDAC to label RPC nuclei at E16 and P5 was HDAC1. In contrast, there was generally increased nuclear localization of all Class I HDACs in differentiating RGCs. Between P5 and P30, SOX2 expression becomes restricted to Müller glial, cholinergic amacrine cells, and retinal astrocytes. Cholinergic amacrine showed a combination of changes in nuclear localization of Class I HDACs. Strikingly, although Müller glia and retinal astrocytes express many of the same genes, P30 Müller glial cells showed nuclear localization only of HDAC1, while retinal astrocytes were positive for HDACs 1, 2, and 3. Conclusion These results indicate there may be a role for one or more of the Class I HDACs in retinal cell type-specific differentiation

    Spatial ecology of translocated raccoons

    Get PDF
    Raccoons (Procyon lotor) are routinely translocated both legally and illegally to mitigate conflicts with humans, which has contributed to the spread of rabies virus across eastern North America. The movement behavior of translocated raccoons has important ramifications for disease transmission yet remains understudied and poorly quantified. To examine the spatial ecology of raccoons following experimental translocation, we performed reciprocal 16 km-distance translocations of 30 raccoons between habitats of high and low raccoon density (bottomland hardwood and upland pine, respectively) across the Savannah River Site (SRS) in Aiken, South Carolina, USA (2018–2019). Translocation influenced patterns of raccoon space use, with translocated animals exhibiting a 13-fold increase in 95% utilization distributions (UDs) post- compared to pre-translocation (mean 95% UD 35.8 ± 36.1 km2 vs 1.96 ± 1.17 km2). Raccoons originating from upland pine habitats consistently had greater space use and larger nightly movement distances post-translocation compared to raccoons moved from bottomland hardwood habitats, whereas these differences were generally not observed prior to translocation. Estimated home ranges of male raccoons were twice the area as estimated for female raccoons, on average, and this pattern was not affected by translocation. After a transient period lasting on average 36.5 days (SD = 30.0, range = 3.25–92.8), raccoons often resumed preexperiment movement behavior, with 95% UD sizes not different from those prior to translocation (mean = 2.27 ± 1.63km2). Most animals established new home ranges after translocation, whereas three raccoons moved \u3e 16 km from their release point back to the original capture location. Four animals crossed a 100-m wide river within the SRS post-translocation, but this behavior was not documented among collared raccoons prior to translocation. Large increases in space use combined with the crossing of geographic barriers such as rivers may lead to elevated contact rates with conspecifics, which can heighten disease transmission risks following translocation. These results provide additional insights regarding the potential impacts of raccoon translocation towards population level risks of rabies outbreaks and underscore the need to discourage mesocarnivore translocations to prevent further spread of wildlife rabies
    • …
    corecore