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1. Introduction

Regenerative medicine has become a driving force in the treatment of disease and injury over
the last decade [1]. This is due to the accumulation of knowledge in several key areas; 1) the
mechanisms of disease processes, 2) creation of stem cells/induced pluripotent stem cells that
might be used for therapeutic purposes, and 3) factors that are necessary for the proper
differentiation of specific cell types. In any tissue, it might be possible to regenerate lost cells
from exogenous stem cells, endogenous stem or progenitor cells, or endogenous cells that can
dedifferentiate, proliferate and re-differentiate. Several endogenous populations of cells
localized to the eye have been shown to be capable of replacing some or all retinal cell types
in various species; 1) an endogenous population of progenitor cells in the periphery of the eye
referred to as the ciliary marginal zone (CMZ), 2) the retinal pigmented epithelium, 3) non-
pigmented cells adjacent to peripheral retina, 4) NG2+ glial progenitors of the optic nerve, and
finally 5) Müller glia of the retina [2]. This chapter will focus specifically on the responsiveness
of Müller glia to disease or injury to the retina with a special emphasis on signals that have
been shown to lead to the injury response and changes to the extracellular matrix that play a
role in dedifferentiation and proliferation.

2. Müller Glial cell basics

Müller Glia, named after their discoverer Heinrich Müller, were first described in 1851 [3].
Müller Glia are a unique blend of radial glia, astrocytes, and oligodendrocytes that span the
width of the mature retina from the outer limiting memberane in the outer nuclear layer to the
inner limiting membrane at the edge of the retina and vitreous humor [4]. Müller cells are one
of three possible macroglial cells that can be found in the retina. Astrocytes also migrate into
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the retina from the optic nerve and some species also contain oligodendrocytes in the nerve
fiber layer [5]. However, Müller glia are the only glial cells that are derived from retinal
progenitors. Müller cells play a wide variety of roles in both the developing and mature retina.
In order to consider the full effect of gliosis in the diseased or injured retina, we must first
understand their function in the normal retina.

2.1. Retinal histogenesis

Lineage analysis of retinal progenitors using various techniques have shown that many retinal
progenitors have the capacity to produce all retinal cell types [6-10]. Retinal cells undergo a
stereotypical pattern of differentiation in which some cells leave the cell cycle (are born) very
early in retinal histogenesis, such as cone photoreceptors, ganglion cells, and horizontal cells,
while other cells are generated at later timepoints [6, 7, 9-12]. Müller glia are born in the group
of cells that are generated late in the ontogenic period.

Vertebrate retinal cells are arranged in a specific fashion in both layers and in columns [6-8,
13-17]. Figure 1 shows the arrangement of mature retinal cells in the outer, inner and ganglion
cell layers. However, some of the cells are also arranged in a columnar fashion. The later-born
cells, which include the rods, bipolar, and subpopulation of the amacrine cells, all migrate
along the radially arranged Müller glial cells. These cells remain in close contact with the
Müller glia even as differentiation continues and are thought to comprise a metabolic and/or
processing circuit within the retina [17]. The early-born cells are not a part of this columnar
unit. Rather than relying on the Müller glia to migrate to the correct layer of the retina, these
cells undergo nuclear translocation in the relatively thinner early retina [18, 19].

Müller glia also share properties that allow them to organize the laminar structure of the retina.
Cultured Müller glia or Müller glial conditioned-medium are capable of organizing the retinal
neurospheres into a layered pattern which closely resembles that seen in the mature retina [20,
21]. While these experiments suggest that there may be a secreted factor which may mediate
the organizational properties of Müller glia, recent experiments done in zebrafish suggest that
the apico-basal polarity that is inherent in the development of Müller glia is also a critical part
of its organizational capacity [22]. A disrupted apical Müller glial cell process in zebrafish
mutated in the P50 subunit of dynactin leads to a disruption in the normal laminar develop‐
ment of the retina [22]. In mice, disruption of the outer limiting membrane that is comprised
of the apical Müller glial endfeet disrupts the placement of photoreceptors such that misplaced
photoreceptor nuclei are found adjacent to the retinal pigmented epithelium, in a region where
photoreceptor outer segments would normally be located [23].

2.2. Synapse formation

The role of astrocytes in synaptogenesis in the CNS has been established by many investigators
[24-26]. Müller glial cells have been considered by many to be astrocyte-related cells (See Table
1), hence Müller glia may play some role in synapse formation and/or maintenance in the
retina. This idea has been tested in zebrafish retina with somewhat contradictory results [27,
28]. While it appears that the Müller glial cell processes do not invade the outer plexiform later
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until after synapses have already formed and deletion of Müller glia during early retinal
development does not affect cone synaptogenesis, a separate study examining the role of
harmonin (USH1C) in zebrafish which is found in the retinal Müller glia, have disrupted ribbon
synapses [27, 28]. Until this conflict can be resolved and the role of these cells have been
investigated in other species, the role of Müller glia remains open.

Figure 1. Organization of the mature retina: The retinal cells, which consist of neurons and glia, are organized into the
outer nuclear layer (ONL), inner nuclear layer (INL) and the ganglion cell layer (GCL). The ONL consists of the rod and
cone photoreceptor cells. The INL is made up of the horizontal cells, amacrine cells as well as the bipolar cells. The
Müller glial cell bodies are also present in this layer. However, the processes of the Müller glial cells extend outward
into the adjacent layers, extending throughout the thickness of the retina. The GCL is primarily consists of the gan‐
glion cells which send out their axons out of the eye through the optic disc.
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Astrocytes Müller glia

Location • Throughout the nervous system, including the

retina and optic nerve [226]

• Found exclusively in the inner nuclear

layer of the retina with the process

spanning the entire width of the retina

[227, 228]

Origin • Originate from the glial restricted neural stem

cells or the bipotent O2A progenitor cell type

[229]

• Originate from the neural retinal

progenitor cells [227, 228]

Morphology • Have a stellate or star like morphology [226] • Have a radial morphology [227]

Functions • Scaffolding for migration of developing

neurons [230]

• Aid in the formation of synapses [231-233]

• Aid in the formation of the blood brain barrier

[234]

• Serve as a source of nourishment and energy

reserve for the neurons by providing glucose and

storing excess glucose in the form of glycogen

[235, 236]

• Possess various channels and transporter (Na
+/K+ channels, aquaporins etc.) which aid in the

maintenance of homeostasis, pH levels and

removal of toxic metabolites [237, 238]

• Possess transporters for neurotransmitters

(such as GABA, glycine, glutamate)which aid in

clearance and release of these molecules into

the synaptic space which can affect synaptic

transmission[232, 239]

• Serve as a scaffolding for retinal

organizations [227]

• Help direct light through the retinal layers

to the photoreceptor cells [240]

• Help in recycling photopigments [241]

• Aid in the formation of the blood retinal

barrier [242]

• Similar to astrocytes serve as a source of

nourishment and energy reserve in the

form of glucose and lactate respectively

[227]

• Help in maintenance of homeostasis and

removal of toxic metabolites in a manner

similar to astrocytes [115]

• Neurotransmitter receptors (AMPA,

GluR4, NMDA, GABA-A etc.), transporters

and modulators (GLAST, GS, GAT etc.) help

in neutransmitter recycling and also aid in

glia-neuron communication [115]

Changes during

reactive gliosis

• Changes in gliosis based on extent of injury

which ranges from mild to moderate to severe

[243]

• Cells hypertrophy (particularly by increasing

the expression of GFAP), change in morphology

and upregulate various markers [244]

• Increase proliferation and in severe cases form

the “glial scar” [245]

• Similar to astrocytes following retinal

damage, cells hypertrophy, change

morphology and upregulate various

markers [246]

• Based on the ability or the lack of cells to

proliferate, Müller cell gliosis is referred to

as non conservative or conservative gliosis,

respectively [115]

• Glial scar is not a prominent feature of

gliosis of the Müller glia [114, 115]
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Astrocytes Müller glia

Stem cell potential Following injury –

• Cells dedifferentiate and have the potential to

re-enter cell cycle [111]

• Begin to express proteins associated to neural

stem cells or radial glia (NG2, BLBP, nestin, DSD1,

CD15) [99]

Following retinal injury –

• Müller glial cells re-enter cell cycle and can

proliferate [111, 114]

• Following targeted ablation of

photoreceptor and ganglion cells,

regeneration of the respective cell types

was observed from the Müller glia [111,

247]

Table 1. Comparison of Astrocyte and Müller glial Characteristics

2.3. Blood retinal barrier development and maintenance

The blood-brain barrier refers to the separation between the circulating blood and extracellular
fluid found within the central nervous system. In the brain, this barrier is formed through the
interactions between astrocytes and endothelial cells that form the vasculature [29]. In the eye,
the blood-retinal barrier is maintained at two junctures; 1) an „outer barrier“ in the form of the
retinal pigmented epithelium (RPE), and 2) the „inner barrier“ that is comprised of the
endothelial cells of the retinal vasculature [30]. The endothelial cells of the retinal vasculature
form tight junctions that are selectively permeable to hydrophobic molecules such as O2, CO2,
and hormones, while restricting the entrance of bacteria and large or hydrophilic molecules
(See Fig 2). Endothelial cells and pericytes that adhere to the outside of the endothelial cells
are both encompassed by a basal lamina as well as the astrocytic endfeet. There is evidence
that inner barrier is induced and maintained by both Müller glial and retinal astrocytic endfeet
that ensheath retinal blood vessels [31]. The processes of retinal astrocytes, however, are
limited to the never fiber and ganglion cell layer and can only interact with superficial
vasculature near the inner surface of the retina [32]

Müller glia (as well as retinal astrocytes and retinal pigment epithelium) express factors that
are critical to the formation of the deep plexus vasculature in the retina [33]. Angiogenesis is
the result of a balance between the pro-angiogenic factor vascular endothelial growth factor
(VEGF) and anti-angiogenic factor pigment-epithelium derived factor (PEDF) [33, 34]. The
ratio of these factors carefully controls the growth of the deep plexus retinal vasculature. Not
surprisingly, misregulation of these factors can lead to pathological neovascularization, a topic
which will be covered later in this chaper. Many other interactions between Müller glia/
astrocytes and the vasculature have been proposed and/or documented. For instance, Paulson
and Newman simulated a process whereby the activity of neurons indirectly regulated blood
vessel dilation [35]. In a process referred to as siphoning, the Müller glia are proposed to take
up K+ released by active neurons and then release the K+ at the endfeet that are in close
proximity to the vasculature [35]. Thus the astrocyte can effectively redistribute the K+ from
the neuron, which may be some distance away from the nearest blood vessel, to a region
immediately adjacent to the arteriole in a manner that is faster than would otherwise take place
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if the K+ was undergoing simple diffusion. Further, this could also concentrate K+ released over
a wider area to the smaller area of the endfeet.

Figure 2. Aquaporin-4 (AQ-4), bipolar cell/ horizontal cell (BC/HC), excitatory amino acid transporter (EAAT), excitato‐
ry amino acid carrier (EAAC), glial cell derived neurotrophic factor (GDNF), glutamate transporter (GLT), glycine trans‐
porter(GlyT), glutamine synthetase (GS), interleukins (IL), L-type amino acid transporter (LAT), matrix
metalloproteinases (MMP), photoreceptor cell (PC), pigment epithelium derived factor (PEDF), Na+ coupled neutral
amino acid transporter (SNAT), glutamate aspartate transporter (GLAST), vascular endothelial growth factor (VEGF).

Müller glia are also known for releasing many growth factors, and many of these factors effect
the endothelial cells. Transforming growth factor β1 (TGFβ1) is released by Müller glia and
can increase the expression of tissue plasminogen activator inhibitor-1, which could potentially
have the protective effect of reducing hemorhaging in the brain [36-38]. TGF-β1 also has been
shown to have a morphological effect on cultured endothelial cells, inducing them to form
capillary-like structures [39]. Mice with a loss of the integrin αVβ8 that is necesary for TGF-β
activation within the retina also have abnormal superficial as well as deep plexus formation
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[40]. Glial-derived neurotrophic factor (GDNF) and neurturin are also released by Müller glia
and appear to enhance barrier function as measured by transendothelial resistance [41].

Communication between Müller glia and endothelial cells is not a one-way street. There also
appear to be inductive signals released from the endothelial cells that effect Müller glial differen‐
tiation/function. It is well established that leukemia inhibitory factor (LIF) is secreted from
endothelial cells and that it helps to induce astrocyte differentiation in optic nerve astrocytes [42,
43]. LIF and ciliary neurotrophic factor (CNTF) share a part of their receptor complex and
intracellular signaling pathway; therefore it is not surprising to find that CNTF has also been
shown to have effects on astrocyte development [44, 45]. Both CNTF and LIF are present in the
developing retina and CNTF does increase the production of Müller glia [46]. However, an
increase in the expression of LIF from the lens during retinogenesis inhibited the development of
retinal vasculature and increased the expression of VEGF in retinal astrocytes and Müller glia [47].
Hence it is unclear whether LIF plays a role in Müller glial cell differentiation.

2.4. Metabolic coupling with neurons

The brain is a high energy consuming organ, using approximately 25% of the glucose present in
the human body [48]. There is very tight coupling between the demand and supply in the central
nervous system (CNS), and most of this expenditure is due to neuronal activity [48, 49]. Howev‐
er, neurons do not store much glycogen and therefore are reliant upon external sources to fuel
their oxidative metabolism. In the retina, this need is met by both the Müller glia and retinal
astrocytes. Glucose enters Müller glia via glucose transporter-1 (GLUT-1) and is phosporylated
by hexokinase to produce glucose-6-phosphate (Fig 2). From here, part of the glucose-6-phos‐
phate is stored with the Müller glial cell body as glycogen and the rest is metabolized to various
carbohydrate intermediates [50-52]. Neurons can use a variety of substrates to fuel their oxida‐
tive metabolism, including lactate, pyruvate, alanine, glutamine, and glutamate [53, 54]. Müller
glia metabolize glucose and glycogen deposits predominantly to pyruvate and lactate which is
released to the extracellular milieu by the monocarboxylate transporter MCT2 [55, 56]. Neurons
can then take up pyruvate and use it directly in the Krebs cycle to compensate during times of low
glucose [50, 57]. Lactate generated by Müller glia is converted by lactate dehydorgenase and
pyruvate kinase to pyruvate to power the Krebs cycle [55].

Active neurons, in turn, release glutamate, NH4
+, K+, and CO2, all of which are taken up by the

Müller glial cells and are either disposed of or recycled [4]. Glutamate is an excitatory neuro‐
toxin, even at low extracellular concentrations, and is tightly regulated by Müller glia in the
retina [58]. Müller cells take up glutamate via the glutamate/aspartate transporter, GLAST,
and NH4

+ via an ammonia transporter (AMT) [59, 60]. In addition to transporting glutamate
into Müller glial cells, the GLAST protein co-transports 3Na+ ions and one H+ and counter-
transports one K+ [61]. The influx of Na+ into the Müller cell activates the Na+/K+ ATPase which
further stimulates glycolysis [4, 62]. Both the NH4+ and glutamate are use to create L-glutamine
by glutamine synthetase [60, 63-65]. The glutamine produced by Müller glia is then transported
back to neuronal cells to aid in the synthesis of neurotransmitters glutamate and GABA [54].
The presence of glutamate and NH4

+ have a combined action of increasing glycolysis by the
Müller glia, in part by increasing the expression levels of glutamine synthetase [54, 66, 67].
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Müller glia also act as a sink for excess extracellular K+ in the retina, which is taken up by the
inwardly rectifying K+ (Kir) channels and the Na+/K+ ATPase of the Müller cells [62]. This
elevation of K+ concentration increases the glycogenolysis in cultured Müller glia, tightly
coupling the breakdown of glycogen to neuronal activity [17]. The K+ is then disposed of by
passing K+ into the subretinal space, the vitreous body, or the blood. [68, 69]. Finally, carbonic
anhydrase converts CO2 to bicarbonate which is then released by way of the H+/HCO3

-

exchanger into the vitreous or blood (Fig 2) [70-73].

2.5. Regulation of neurotransmission

In the retina, glutamate is the primary excitatory neurotransmitter [74]. Müller glia have
transporters for a wide variety of transmitters, including glutamate, GABA, Glycine, D-serine,
dopamine, and ATP [75, 76]. The Müller glia take up neurotransmitters and other neuroactive
substances and convert them to substances that can be supplied to retinal neurons as neuro‐
transmitters or neurotransmitter precursors (Fig 2). The modulation of neuronal excitability
through regulation of neurotransmitter availability is thought to serve three functions; 1)
termination of neuronal signaling, 2) prevention of neurotransmitter spread to adjacent
synapses, and 3) prevention of neurotoxicity resulting from prolonged presence of a trans‐
mitter at a synapse [4, 75]. In this section, we will briefly cover transport of the major retinal
neurotransmitters into Müller glia, processing of the transmitter by the Müller glia and
transport of products back to retinal neurons.

Müller glia express several glutamate transporters, depending upon the species, including the
previously mentioned GLAST protein (also known as excitatory amino acid transporter 1 or
EAAT1). In humans for instance, the dominant transporter is EAAT1, but EAAT2 and 3 can
also be found [77]. Glutamate is the most widely used neurotransmitter used by retinal
neurons, including photoreceptors, bipolar and ganglion cells. Both the photoreceptors and
the bipolar cells have graded potentials, hence the amount of neurotransmitter released is
directly correlated to the amount of stimulus. In addition, photoreceptors are wired a little
differently than other neurons that transduce sensory information; they release glutamate in
the dark and less glutamate upon transduction of light signals. Hence, removal of glutamate
from the synaptic region is critical for normal tranmission of light signals to take place.
Knockdown and knockout studies in the retina have indicated that a loss of GLAST leads to a
loss of the electroretinogram b-wave, primarily because it aids in signal processing between
photoreceptors and bipolar cells, rather than any neurotoxicity associated with high levels of
glutamate [78, 79]. Consistent with the idea that Müller glia are critical for clearing away
glutamate released at synapses are studies in which clearance of D-aspartate was tracked first
to Müller glia followed by a redistribution into other neuronal cell types of the retina [80].
Glutamate can be converted to glutamine by glutamine synthetase, and is then transported
back to neurons as a precursor to glutamate [63, 81]. Loss of glutamine synthetase activity leads
to a loss of glutamate content in retinal neurons which leads to functional blindness within 2
minutes [82, 83].

There are several other neurotransmitters used in the retina, such as GABA, glycine, and
dopamine. Since the interactions of these neurotransmitters are not as heavily studied as
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glutamate, only their uptake mechanism and potential processing within Müller glia will be
discussed here. GABA is used by horizontal and amacrine cells within the retina and termina‐
tion of GABA activity is brought about through the uptake of GABA by Na+/Cl- - dependent GABA
transporters (GATs) found in presynaptic neurons, Müller glia, and retinal astrocytes [76, 84, 85].
After uptake into Müller glia, GABA can be converted to glutamine via glutamine synthetase and,
as specified above, is returned to neurons to act as substrates for neurotransmitters [86]. Müller
glia also express glutamate decarboxylase which catalyzes the decarboxylation of glutamate to
GABA. It is unclear, however, whether GABA can be released by Müller glia [76].

Dopamine performs a large number of functions in the developing and mature retina that are
well out of the scope of this chapter. A full discussion of this topic can be found elsewhere [87].
Both the transporter and enzymes necessary for converting tyrosine to dopamine are expressed
in Müller glia [88]. Likewise, ATP also performs a large number of functions in the developing
and mature retina [89-91]. Müller glia express a subset of the P2X and P2Y ATP receptors and
they also have the ability to convert ATP to adenosine and release both ATP and adenosine
into the intracellular space [91, 92].

Müller glia also carry glutamate, GABA, purinergic, glycine, dopaminergic, noradrenergic and
cholinergic receptors [76]. In some instances these receptors have been shown to coordinate
release of neurotransmitters by neurons with enzymatic activity and or gene regulation in the
Müller glial cells. An excellent example of this coordination is the regulation of glutamate
receptors on GLAST activity and expression of GLAST. When glutamate receptors are
activated on Müller glial membranes it leads to an increase in intracellular Ca2+ and protein
kinase C (PKC). The activation of metabotropic glutamate receptors in Müller cells leads to an
increase in Ca2+ and protein kinase C, and phosphorylation of GLAST by PKC leads to an
increase in transport of glutamate [82, 93]. The increased transport of glutamate through
GLAST appears to regulate activation of mammalian target of rapamycin (mTOR), which
activates DNA binding of the transcription factor activator protein-1 (AP-1) and an increase
in GLAST mRNA [94].

2.6. Other

Müller glia perform a variety of other functions beyond those already mentioned. For instance,
in addition to siphoning K+ released by retinal neurons, the Müller glia are also responsible
for the transport of water that accumulates in the tissue as the end product of ATP synthesis
[95]. The movement of water is specifically coupled to the movement of Na+ and K+ and, like
K+, is released into the bloodstream. Müller cells are also involved in phagocytosis of debris in
the retina and in the release of antioxidant glutathione [96, 97]

3. Properties that are similar to stem cells/astrocytes

Studies using reactive astrocytes have shown the potential to dedifferentiate into cells having
neural progenitor or stem cell like properties (Table 1) [98, 99]. Following stimulation, these
cells show activation of signaling pathways such as EGF, FGF, SHH and Wnts, previously
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shown to be associated with the neural stem cells [98, 100-102]. Similarly, activated Müller glial
cells following retinal injury have also shown the capacity to dedifferentiate into retinal
progenitor cells [103]. Studies in lower vertebrates such as fish, amphibians and birds have
shown the presence of a stem cell niche in the ciliary marginal zone (CMZ) of the retina
[104-107]. Mammals, however, do not have a CMZ [108]. In mammals, a small group of cells
in the non-pigmented portion adjacent to the retina can proliferate up to postnatal day 21, but
these cells are low in abundance and are not thought to generate many cells [103, 109]. It may
be more feasible to generate many retinal progenitor cells from activated Müller glia. Expres‐
sion profiling of proliferating Müller cells suggests a stem cell like role for these cells [110,
111]. Culture of the Müller cells in an enriched medium generated “multipotent neuro‐
spheres”, elucidating the stem cell role of Müller cells in vitro. Further transplantation of
enriched Müller glial cells into injured retina generated cells with neuron like characteristics
[112]. Müller cells have been shown to dedifferentiate, proliferate and give rise to amacrine
cells, bipolar cells, retinal ganglion neurons as well as the photoreceptor cells. [110, 111, 113].
One important factor aiding the transformation of the Müller glial cells is the membrane
depolarization due to a reduction of potassium ion conductance, primarily due to downregu‐
lation of the Kir channels in the Müller cell [114]. The dowregulation of the Kir channels leads
to a decrease in the p27kip1 cyclin kinase inhibitor, which is then succeeded by re-entry into
cell cycle. The downregulation of the Kir channels pushes these cells towards the proliferative
stage [115].

4. Response of Müller Glia to injury or disease states

When there is injury or disease within the CNS, astrocytes respond by entering a state referred
to as reactive gliosis. Reactive gliosis is an ill-defined set of molecular changes that alters the
homeostatic role of the cells and their interactions with neurons, vasculature, and the immune
system. Reactive gliosis is thought to be the result of signals received from the injured or
diseased tissue that begins a molecular cascade within the glial cells resulting in a change of
state [103]. There are a mulitude of questions that have arisen as a result of our limited
understanding of gliois, and investigators are currently working to answer these questions.
Among them:

• Is reactive gliosis one condition, or a host of related conditions?

• What are the molecular triggers of gliosis?

• Do all the triggers that appear to be involved in gliosis converge on one or two pathways
that mediate the changes in Müller glial state, or, are their multiple pathways that can
mediate multiple changes?

• Do different signals mitigate mild, moderate or severe reactive gliosis? How are these forms
of gliosis related?

• Can severe reactive gliosis be attenuated, even when triggers are chronically present?
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• Can the reactive gliosis be used to „supply“ multipotent stem cells to the retina to replace
dead or dying neurons?

• Can the multipotent stem cells that arise from Müller glial cells be directed in their differ‐
entiation in vivo and can the number of progenitor cells differentiating into cell types other
than Müller glia be increased substantially?

There appears to be a continuum in the states of reactive gliosis, from mild to severe. In the
mild to moderate forms of gliosis, the cells may hypertrophy and show some changes to their
functionality, but, if the trigger is removed, the cells may revert back to their former condition
without altering the tissue [116]. In the more severe forms of reactive gliosis, cells hypertrophy,
lose functionality, form glial scars that are inhibitory to axonal regeneration and neuronal
surivival, and may also proliferate [116, 117]. The severe state is marked by the persistance of
these characteristics. Within the mammalian retina, both the Müller glia and retinal astrocytes
display reactivity to injury and disease. In this section we will talk about triggers of Müller
glia, evidence that BMP7 may also be a trigger, and the changes in retinal homeostasis that
result from reactive gliosis in the retina.

5. Triggers of reactive gliosis

5.1. Known triggers

Müller glial reactivity can be found in every identified disease and injury that plagues the eye,
including diabetic retinopathy, glaucoma, age-related macular degeneration, retinitis pig‐
mentosa, and many many others [118-122]. In considering reactive gliosis, there appears to
multiple levels of complexity. For instance, there are a wide range of factors which have been
shown to trigger reactive gliosis in Müller glia (Figure 3 and Table 2). Some of these triggers
can have concentration-dependent effects upon astrocytes [116]. Further, different triggers can
lead to specific molecular and functional changes in the Müller glia that may correspond to
the various aspects of reactive gliosis [123]. Not only are there multiple triggers, but there is
heterogeneity in the response of Müller glia to the same factor [118].

5.2. Bone morphogenetic proteins in Müller cell gliosis

Studies in the injured spinal cord have indicated a role for another family of growth factors;
the bone morphogenetic proteins (BMPs). The BMPs are members of the TGF-β superfam‐
ily of growth factors. The receptors include two basic types, Type I and Type II, both of
which are serine-threonine kinases. Receptors from each type must form heterodimers in
order for signaling to occur, although the Type I receptors are downstream of the Type II.
There are two non-canonical signaling pathways, BMP-MAPK and FRAP-STAT, that have
more  recently  been  identified  in  addition  to  the  canonical  SMAD-related  pathway  [45,
124-129]. Three type I receptors have been associated with the BMPs, activin-like kinase 2
(ALK2), ALK 3 and ALK6. Accumulated evidence has shown that in regards to the Type
I receptor, BMP 6 and 7 activate the ALK2 receptor preferentially, whereas BMPs 2 and 4
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activate either ALK3 or ALK6 [130]. In addition to the canonical SMAD pathway, ALK3
and 6 also activate the BMP-MAPK and FRAP-STAT pathways [45, 124, 129]. The BMPs
have  been  shown  to  act  as  a  gliosis  trigger  in  penetrating  spinal  cord  injuries,  and  a
differential role for ALK3 and 6 receptors has been ascribed to various aspects of gliosis,
including hypertrophy,  inflammation,  and tissue loss  [131,  132].  While  BMPs have been
studied in retinal injury, primarily as a survival factor for retinal neurons, it has not been
studied as a potential trigger for reactive gliosis in Müller glia [133].

My lab has investigated the role of BMP7 as a potential trigger for reactive gliosis in Müller glia
and retinal astrocytes. We and others have documented changes in BMP expression and signal‐
ing following injury or disease in the retina and optic nerve [134]. We have determined expres‐
sion levels of BMPs and BMP intracellular signaling pathway members in a diabetic mouse model,
the Akita mouse model (InsAKITA). These mice contain a naturally occurring missense mutation in

Growth Factors and Cytokines

Ciliary Neurotrophic Factor/Leukemia Inhibitory Factor [86,

248-251]

Epidermal growth factor/HB-EGF [84, 87, 180]

Fibroblast growth factor 2 [250, 252]

Brain-derived neurotrophic factor [250]

Transduction Pathways and Transcription Factors

STAT3 [248, 253, 254]

NF-κB [255, 256]

Toll-like receptor 2 [257]

TRPV1 (Vanilloid Receptor) [85]

Gp130 [249]

Epidermal growth factor receptor [87]

Fibroblast growth factor receptor [179]

MEK [179, 258]

Other

Oxidative Stress/Ischemia [38, 254, 255]

ATP

Glucose [88, 259]

Amyloid Beta [260]

Endothelins [261]

Nitric Oxide

Table 2. Triggers of Müller Glia Cell Activation
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Figure 3. Schematic representation of various signaling mechanisms which trigger and regulate reactive gliosis in
Müller glia. Growth factors such as TGF-β, BMP, EGF and CNTF; interleukins; as well as reactive oxygen species and free
radicals are known factors to trigger gliosis in Müller glial cells. Activator protein-1 (AP1), adenosine triphosphate
(ATP), bone morphogenetic protein (BMP), ciliary neurotrophic factor (CNTF), calcineurin (CN), cAMP response ele‐
ment binding protein (CREB), epidermal growth factor (EGF), endothelin 1 (ET1), extracellular-signal-regulated kinase
(ERK), fibroblast growth factor (FGF), interleukin (IL), inhibitor of differentiation (ID), janus kinase (JAK), mitogen acti‐
vated protein kinase (MAPK), mammalian target of rapamycin (mTOR), nuclear factor of activated T-cells (NFAT), nu‐
clear factor kappa-light-chain-enhancer of activated B cells (NF-κB), nitric oxide (NO), reactive oxygen species (ROS),
tumor necrosis factor-α (TNF-α), transforming growth factor-β (TGF-β), uridine triphosphate (UTP), uridine diphos‐
phate (UDP).
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the insulin 2 gene that causes a switch from a cysteine to a tyrosine residue at amino acid 96,
removing one of the cysteines necessary for an intramolecular disulfide bond [135]. Heterozy‐
gous mice are severely insulin deficient and become diabetic at about 6 weeks of age [135]. For
these studies we used two stages; mice that are 3 weeks of age have mild to no reactive gliosis,
while 6 weeks of age has moderate gliosis. Levels of BMP expression were determined by reverse
transcription – quantitative polymerase chain reaction (RT-qPCR) of RNA samples from 3 and 6
week old wild type and heterozygous mice. The graphs show changes in mRNA levels in the 3
and 6 week InsAKITA mice relative to levels of mRNA in wild type samples (Fig 4A, B). Further,
genes that are known downstream targets of the BMP pathway, such as inhibitor of differentia‐
tion (ID) 1, 3, and MSX2 are also increased, consistent with an increase in BMP signaling (Fig 4A,
B). To verify there was an increase in canonical BMP signaling, an increase in nuclear localiza‐
tion of phospho-SMAD1 (p-SMAD1,5,8) sections through wild-type and 6 week InsAKITA retina
were immunolabeled for p-SMAD1,5,8 and glutamine synthetase (Fig 4C-N). The InsAKITA retina
showed a clear increase in p-SMAD1,5,8 expression in the inner nuclear layer at 6 weeks of age,
some of which was coincident with cells glutamine synthetase-expressing Müller glia (Fig 4L-
N). There was also clear increase in p-SMAD1, 5, 8 in other cells of the inner nuclear layer and cells
of the ganglion cell layer.

To test the role of BMPs in reactive gliosis in vivo, adult murine eyes were injected intravitreally
with vehicle or BMP7 and analyzed 3 or 7 days post injection. At both 3 and 7 days post vehicle
injection, there were the normal low levels of GFAP expression and moderate levels of gluta‐
mine synthetase in Müller glia (Fig 5A, B, G, H). A low level of the chondroitin sulfate proteogly‐
can, neurocan, is present throughout the retina (Fig 5C, I). Three days post BMP7 injection, no
increase in GFAP was detected, but an increase in both glutamine synthetase and neurocan levels
were detected (Fig 5D-F). Immunolabel of BMP7-injected eyes showed an increase of GFAP,
glutamine synthetase and neurocan in comparson to vehicle-injected eyes (Fig 5J-L).

6. Characteristics of reactive gliosis in Müller Glial cells

Müller glia display many changes during reactive gliosis (Fig 6). We have grouped these
changes into 6 broad categories; 1) hypertrophy, 2) loss of functionality, 3) neuroprotection, 4)
inflammation, 5) proliferation, 6) remodeling.

6.1. Hypertrophy

Hypertrophy refers to the swelling of the Müller glial cell body and processes. The swelling
is, in part, brought about by an increase in the expression of two type III intermediate filament
genes, GFAP and vimentin. As with many changes that occur with reactive gliosis, upregula‐
tion of intermediate filaments and the ensuing hypertrophy has both good and bad charac‐
teristics associated with it. Hypertrophic glia help to form and maintain a barrier around
injured tissue which helps to protect surrounding tissues from inflammatory signals [136,
137]. On one hand, there is evidence that the increased production of GFAP does not lead to
diminished neuronal metabolism, eletrophysiology or visual function [138]. However,
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evidence from injured spinal cord indicates axonal regeneration and functional recovery was
increased in GFAP/vimentin double-knockouts in comparison to wild type controls [139].
Further, the retinas of GFAP/vimentin double knockouts were also protected from retinal
degeneration following retinal detachment, and integration and neurite extension from
transplanted cells is also enhanced [140].

In addition to increased intermediate filament expression, hypertrophy is also the product of
a loss of K+ conductance into the blood stream as already covered in section 1.3, Müller glia
take up K+ released by retinal neurons and release it into the bloodstream. Water in the tissue,
created through the process of oxidative synthesis of ATP, is removed through the pigmented
epithelium and Müller glia. The movement of water is coupled to the movement of osmolytes,
including Na+ and K+ ions, and are subsequently removed from the Müller cell bodies via
release into the bloodstream [4]. Müller glia undergoing gliosis downregulate the K+ channel,
Kir4.1, that delivers K+ to the vasculature, which uncouples the movement of K+ and water into
the blood. The end result is swelling of the Müller cell body.

6.2. Loss of functionality

Loss of functionality is a part of the general response of the cells to undergo dedifferentiation.
However, the response of the Müller cells can vary depending upon the disease or injury
present. A good example of this is the regulation of the glutamate transporter in disease and
following mechanical injury. Downregulation of glutamate transporters is observed in
glaucoma, ischemia and diabetic retinopathy, due to a decrease in the activity of the glutamate
transporter GLAST. This in turn downregulates the activity of glutamine synthetase, an
enzyme involved in glutamate recycling [141]. However, following mechanical nerve injury,
as seen with the optic nerve crush model, glutamine synthetase was found to localize to the
ganglion cell layer, aiding in the recycling of the excess glutamate released due to neuronal
injury. [142].

The Kir channels (potassium channels) in the Müller glial cell membrane play an important
role in the gliosis response as well. Decrease in conductance of the potassium ions due to down
regulation of Kir 4.1 leads to an increase in potassium ions outside the membrane. This, in turn,
decreases the transport of glutamate, glucose and water across the Müller glial cell surface.
Consequently, an increase in the glutamate toxicity, decrease in glutathione synthase activity
and osmotic swelling were observed in the retina, which contribute to the loss of glia/neuron
interactions [97, 114, 120, 143-146].

There is also a reduction in the blood-retinal barrier function under hypoxic conditions. This
appears to be driven by changes Müller cell expression of growth factors that regulate
endothelial cell tight junctions. The balance between factors that increase endothelial cell tight
junctions (PEDF, glial derived neurotrophic factor (GDNF), transforming growth factor Beta
(TGFβ), thrombospondin, etc) and factors that decrease barrier function (VEGF, TNFα, FGF2,
etc) is disrupted by reactive gliosis [34, 41, 147-153]. VEGF appears to be the dominant factor
released from Müller glial cells in decrease of barrier function and angiogenesis that occurs in
many forms of retinal injury and disease [153].
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Figure 4. Analysis of retinas of the Ins2Akita diabetic mouse shows increase in BMP signaling in the diseased eye when
compared to the wild type eye. A and B: qPCR results analyzing the levels of various BMP molecules shown to be regu‐
lated during reactive gliosis and some of the targets of the canonical BMP signaling pathway, using RNA obtained
from whole retinas in 3 week and 6 week diseased eye, respectively, normalized to their respective wild types. At the 3
week stage (A), when little or no gliosis is observed (data not shown) levels of BMP 2, 4 and 6 appear to be high. At
the 6 week stage (B) when we do seen an increase in expression of GFAP, GS and neurocan (data not shown), there is

Neural Stem Cells - New Perspectives88



an increase in levels of BMP7 with a subsequent decrease in the levels of other BMP molecules, indicating a role for
BMP7 in reactive gliosis in the diseased state. Immunohistochemistry was performed to determine the localization of
phospho SMAD with glutamine synthetase in the retinas (C – N). The 3 week retinas show similar nuclear phospho
SMAD levels in both the wild type and the Ins2Akita (C, E, F and H). In the 6 week Ins2Akita, there is a clear increase in the
phospho SMAD levels in the inner nuclear layer nuclei (L and N) when compared to the wild type (I and K), possibly
due to the increase in BMP7 shown previously (B).

Figure 5. Effect of intra vitreal injections of BMP7 into normal mouse eyes – Retinal sections of eyes injected with ei‐
ther vehicle or BMP7 were analyzed 3 days (A – F) and 7 days (G – L) post injection via immunohistochemistry for the
localization of glial fibrillary acidic protein (GFAP), glutamine synthetase (GS) and neurocan. Retinas isolated 3 days
post injections do not show an increase in GFAP (A and D) or neurocan (C and F), although GS does seem to show an
increase when compared to the vehicle injected eyes (B and E). Retinas isolated 7 days post injection did show a clear
increase in GFAP (G and J), GS (H and K) and neurocan (I and L) in the BMP7 injected eyes compared to the control
eyes, suggesting the BMP7 was able to trigger gliosis in these retinas.
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Figure 6. Schematic representation of reactive gliosis response in Müller glia depending on the extent of the injury.
Mild changes in reactive gliosis comprises of hypertrophy of the cells due to an increase in glial fibrillary acidic protein
and changes to the function and morphology of the cell, with little or no proliferation which has the potential to re‐
solve once the stimulus subdues. Severe reactive gliosis occurs following tissue damage and induces Müller glial cell
proliferation, overlapping of cell processes, hypertrophy, functional and morphological changes. Under severe gliosis
conditions reactive Müller cells have shown the ability to dedifferentiate and give rise to some of the retinal cells
types.

6.3. Neuroprotection

Reactive gliosis in Müller cells is a complex response dependent on the injury or disease.
Diseases which lead to retinal degeneration such as retinal detachment, retinitis pigmentosa
or physical damage to the retina elucidate such a response from the Müller cells to aid in
neuoprotection and prevent apoptosis [114, 141]. A wide range of growth factors secreted by
the reactive Müller cells, including bFGF, GDNF, CNTF, and VEGF [114, 141, 150, 154, 155].
Upregulation of CNTF and bFGF have been observed following mechanical injury, ischemia
and NMDA mediated neuronal death [156-158]. These growth factors help to increase neuron
survival and inhibit apoptosis, either directly as is the case for bFGF, or indirectly in the case
of CNTF and GDNF [159, 160]. GDNF also upregulates GLAST, thereby, protecting neurons
from excessive glutamate excitotoxicity [160]. VEGF is another factor which is upregulated
following gliosis. Hypoxia as well as diabetes has shown to increase the VEGF secretion by
Müller glial cells [161, 162]. VEGF may act directly by increasing the permeability of the
endothelial cells [163]. VEGF may also be regulated by TGF-β released during hypoxia, which,
along with other cytokines such as TNF-α, increase the expression of matrix metalloproteinases
which can clear the basement membranes of these cells generating leaky vessels [38, 164].
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Müller cells also protect retinal neurons from oxidative stress, excitotoxicity and from dam‐
aging reactive oxygen species via conversion of glutamate to glutamine as well as synthesis
and release of antioxidants such as glutathione [165, 166]. However, concomitant with an
increase in the antioxidant glutathione, during hypoxia, diabetic retinopathy, hyperglycemia
and ischemia there is also an increase in the expression of inducible nitric oxide synthase and
cyclooxygenase-2 [167, 168]. These enzymes can lead to production of nitric oxide, prosta‐
glandins and superoxides which are detrimental to retinal neurons and may induce apoptosis
in neural cells [169]. Nitric oxide also has a beneficial role as it increases blood flow by dilating
blood vessels and prevents glutamate toxicity by closing N-methyl –D-aspartate (NMDA)
receptors [170].

6.4. Inflammation

Müller cells also play a role in the inflammatory response observed in the retina, primarily
seen in the diabetic retina. Under these conditions, the activated Müller cells begin expressing
pro inflammatory cytokine interleukin-6 (IL-6) and IL-1B [171, 172]. They also increase
expression of TNF-α which increases the expression of the chemokine IL-8 and MCP-8, and
promotes infiltration of inflammatory cells [173]. The inflammatory response is further
supported by the decrease in glutamate uptake in diabetic retinas. This increases the expression
of glutaredoxin, which translocates NF-κB to the nucleus and increases the expression of pro-
inflammatory proteins [141].

6.5. Proliferation

Dedifferentiation  and  proliferation  of  Müller  glia  is  known  to  occur  in  many  different
species, including chick, fish, and even mammalians [108, 110, 174-177]. Several aspects of
Müller cell proliferation are of interest here; 1) the molecular pathways that result in the
release of the cells from their normally quiescent state, 2) extrinsic signals that are necessa‐
ry  for  the  proliferative  reponse,  and  3)  directing  progenitor  cells  to  differentiation  and
integration into retinal tissue.

Several intracellular signaling pathways have been investigated to determine those that may
be important for the proliferative response in dedifferentiating Müller glia. The FGF-MAPK
pathway appears to be indespensible for the proliferative activity seen during reactive gliosis
[178, 179]. The heparin binding epidermal growth factor (HBEGF)-MAPK pathway is be also
induced in the Müller glia found in injured areas and appears to be associated with regener‐
ation-associated genes [180]. Further, the HB-EGF pathway appears to be upstream of the
WNT-β-catenin pathway, which has been very clearly associated wth re-entrance of Müller
glia into the cell cycle [181]. More specifically, Müller glia that are poised to re-enter the cell
cycle accumulate β-catenin in injured zebrafish retina, whereas those Müller cells that remain
quiescent do not accumulate β-catenin [181]. Further, activation of the WNT/β-catenin
pathway stimulates a loss of Müller glia and a concomitant increase in newly generated
photoreceptors [181].
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In order for Müller glia to re-enter and progress in the cell cycle, the cells would also have to
suppress some of the cell cycle check-points that are responsible for the quiescent state of the
cells. Inhibition of the cyclin kinase inhibitor p27 has been shown to play a pivitol role in the
ability of Müller glia to re-enter the cell cycle. P27 regulates the cell cycle by blocking cell cycle
progression into the S-phase, and hence is necessary for maintainance of the quiescent state
[182]. Knock-out mice for p27 show many of the characteristics of reactive gliosis, including
an increase in GFAP expression and proliferation and migration of cells into the subretinal
space [138, 182-184].

6.6. Remodeling

There appears to be three elements of the retina which can undergo remodeling as a result of
gliosis; 1) vasculature, 2) the Müller glia themselves, and 3) the extracellular matrix. The
neovascularization is, for the most part, due to an imbalance between the antiangiogenic factor
PEDF and and the angiogenic factor VEGF [162, 185-190]. Under hypoxic conditions, tran‐
scriptional activation of VEGF occurs by translocation of the newly stabilized hypoxia
inducible factor-1α (HIF-1α) and it’s partner HIF-1β to the nucleus where they bind to the
hypoxia responsive element (HRE) in the 5‘ flanking regions of the VEGF gene [191, 192]. VEGF
is released into the extracellular mileu, where it penetrates the basal laminae and interacts with
retinal endothelial cells. This interaction results in an increase in the release of a family of zinc-
dependent endopeptidases called the matrix metalleoproteinases (MMPs), plasminogen
activators, and other proteinases which degrade proteins, such as occludens, which necessary
for the tight junction formation between endothelial cells [192-196]. The VEGF activates the
MAPK pathway via phospholipase C-γ, which mediates proliferation of the endolthelial cells
[197]. The MMPs also degrade the basal laminae, removing contact inhibition of the endothelial
cells and permitting proliferation [38].

The Müller glia participate in remodeling themselves by extending hypertrophied processes
into areas they are not typically found. For instance, processes can protrude into the subretinal
space, plexiform layers, the vitreous, into occluded blood vessels, and even into the choroid
[122, 198-203]. In some respects, the Müller glia are expanding into areas where degenerating
neurons and/or axonal processes are found, such as the subretinal space or plexiform layers
[204]. If these new processes persist, the end result is the formation of scar tissue, which can
permanently block the reattachment of the retina, regeneration of outer segments or regener‐
ation of synaptic contacts in the plexiform layers [118, 122, 205-209]. The extension of processes
onto the vitreal surface of the retina results in the formation of periretinal membranes that may
under epithelial to mesenchymal transformation into myofibrocytes that spread and become
contractile [210]. The contractility leads to folds and/or deformations in the retina, causing
visual distortions at the very least, and, at worst, can cause retinal detachments [211, 212]. Glial
membranes/scars are a significant issue in the treatment of visual disorders in humans,
occuring in appoximately 15% of retinal detachments [213].

The last element of the retina that undergoes remodeling during reactive gliosis is the extrac‐
ellular matrix (ECM). During reactive gliosis, Müller glia upregulate expression of MMPs and
the gene products are secreted and activated [196, 214-218]. Each MMP specifically targets and
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proteolytically cleaves one or more ECM molecules. The activity of MMPs is regulated by
activators as well as inhibitors; the precursor molecules must be processed, either by already
activated MMPs or by one of a variety of serine proteases and the MMPs can be inhibited by
the tissue inhibitors of metalloproteinases (TIMPs) [219]. When activated, the MMPs degrade
the existing ECM in preparation for replacement with an ECM that partially inhibits neurite
outgrowth or supports abnormal neurite outgrowth [141]. In the normal adult retina heparin
sulfate proeoglycans (HSPGs) are typically found on Müller glial endfeet and in retinal basal
lamina, serving as a substrate for axonal outgrowth. The HSPG, via the HS chains, is also a
ligand for the protein tyrosine phosphatase-sigma (PTP-σ), used in signaling in axons and
growth cones in response to matrix cues. The HSPGs involved are agrin and collagen XVIII
[220]. The HSPGs are lost in favor of the axonal outgrowth inhibitory molecules known as the
chondroitan sulfate proteoglycans (CSPGs). The CSPGs include phosphacan, aggrecan, NG2,
brevican, versican, and neurocan [221]. In addition to turning over the ECM, the degradation
of the ECM also releases growth factors that are bound to the ECM, such as EGF, FGFs, BMPs,
insulin, and VEGFs [219].

Müller glia can form new neurons in a process said to involve dedifferentiation of the Müller
glia. Tenascin C (TNC), a matricellular protein, influences the dedifferentiation behavior of
Müller glia in response to FGF2 in vitro, affecting the composition of the ECM. Sulfated
chondroitin glycosaminoglycan chains in CSPG are the main target. Chondroitin sulfate
increases in TNC-deficient mouse ECM [222]. The proteoglycan most affected by TNC is the
CSPG Phosphacan/RPTPβ/ζ which bind to TNC [223]. TNC shows overlapping expression
with phosphacan [224]. In a TNC knock out mouse TNC level rise. Studies using immunocy‐
tochemistry for phosphacan, Western Blots and PCR for mRNA levels show that it is the
chondroitin sulfate chains that increase, not the amount of mRNA for CSPG core protein.
Proliferation rates also increase in the TNC-deficient mice, but it is not clear if this affects exit
from the cell cycle and differentiation [222].

SPARC (secreted protein, acidic and rich in cysteine)/osteonectin is also a matricellular. It interacts
with growth factors and ECM forming a link that modulates the cell cycle and other cell behav‐
ior. SPARC remains expressed at significant levels in the adult CNS, moreso than in most normal
adult tissues. SPARC is widely expressed in remodeling injured tissue and in morphogenesis in
development [225]. In normal newborn and adult bovine retinas SPARC is found in ganglion cell
soma and in ganglion cell axons, with higher expression in the adult tissue. SPARC is thought to
have a function in maintaining healthy retinas and is localized to the ganglion cell layer (GCL),
nerve fiber layer (NFL) and some retinal capillaries. Müller glia showed no immunoreactivity,
but the GFAP-positive retinal astrocytes were SPARC-positive [225].

7. Conclusion

The evidence to date has shown that Müller glia undergo dedifferentiation and generate retinal
progenitors that may be capable of differentiating into retinal neurons. Several potential
problems have arisen that impact on the ability of those progentiors to effectively be used to
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regenerate large numbers of neurons following injury or during disease. Of the proliferating
population that arise from dedifferentiated Müller glia, a very small percentage go on to
become retinal neurons [4, 141]. The inability of the cells to differentiate into retinal neurons
implies that either the signals and/or competence necessary for differentiation have been lost
or there are signals present that direct progenitor cells away from differentiation into retinal
neurons. Further, if the progenitor cells can be induced to differentiate, they will have to
functionally integrate into the diseased or injured retina. This, in and of itself, will be a
challenge if glial scars are present in the tissue as the glial scars will prevent ntegration by
inhibiting migration, placement, and/or synapse formation. Clearly, investigators have been
untangling which signaling pathways are critical for various aspects of reactive gliosis to occur.
If signals that are necessary for proliferation can be separated from those necessary for glial
scars to form, there is the possibility that therapeutic approaches could be engineered that will
block scar formation while allowing proliferation to occur. There are many challenges ahead
before the potential of Müller glia as a source for retinal regeneration can be realized.
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