80 research outputs found

    Pericellular activation of hepatocyte growth factor by the transmembrane serine proteases matriptase and hepsin, but not by the membrane-associated protease uPA

    Get PDF
    HGF (hepatocyte growth factor) is a pleiotropic cytokine homologous to the serine protease zymogen plasminogen that requires canonical proteolytic cleavage to gain functional activity. The activating proteases are key components of its regulation, but controversy surrounds their identity. Using quantitative analysis we found no evidence for activation by uPA (urokinase plasminogen activator), despite reports that this is a principal activator of pro-HGF. This was unaffected by a wide range of experimental conditions, including the use of various molecular forms of both HGF and uPA, and the presence of uPAR (uPA receptor) or heparin. In contrast the catalytic domains of the TTSPs (type-II transmembrane serine proteases) matriptase and hepsin were highly efficient activators (50% activation at 0.1 and 3.4 nM respectively), at least four orders of magnitude more efficient than uPA. PS-SCL (positional-scanning synthetic combinatorial peptide libraries) were used to identify consensus sequences for the TTSPs, which in the case of hepsin corresponded to the pro-HGF activation sequence, demonstrating a high specificity for this reaction. Both TTSPs were also found to be efficient activators at the cell surface. Activation of pro-HGF by PC3 prostate carcinoma cells was abolished by both protease inhibition and matriptase-targeting siRNA (small interfering RNA), and scattering of MDCK (Madin–Darby canine kidney) cells in the presence of pro-HGF was abolished by inhibition of matriptase. Hepsin-transfected HEK (human embryonic kidney)-293 cells also activated pro-HGF. These observations demonstrate that, in contrast with the uPA/uPAR system, the TTSPs matriptase and hepsin are direct pericellular activators of pro-HGF, and that together these proteins may form a pathway contributing to their involvement in pathological situations, including cancer

    Spatiotemporal expression patterns of Pax6 in the brain of embryonic, newborn, and adult mice

    Get PDF
    The transcription factor Pax6 has been reported to specify neural progenitor cell fates during development and maintain neuronal commitments in the adult. The spatiotemporal patterns of Pax6 expression were examined in sagittal and horizontal sections of the embryonic, postnatal, and adult brains using immunohistochemistry and double immunolabeling. The proportion of Pax6-immunopositive cells in various parts of the adult brain was estimated using the isotropic fractionator methodology. It was shown that at embryonic day 11 (E11) Pax6 was robustly expressed in the proliferative neuroepithelia of the ventricular zone in the forebrain and hindbrain, and in the floor and the mesencephalic reticular formation (mRt) in the midbrain. At E12, its expression emerged in the nucleus of the lateral lemniscus in the rhombencephalon and disappeared from the floor of the midbrain. As neurodevelopment proceeds, the expression pattern of Pax6 changes from the mitotic germinal zone in the ventricular zone to become extensively distributed in cell groups in the forebrain and hindbrain, and the expression persisted in the mRt. The majority of Pax6-positive cell groups were maintained until adult life, but the intensity of Pax6 expression became much weaker. Pax6 expression was maintained in the mitotic subventricular zone in the adult brain, but not in the germinal region dentate gyrus in the adult hippocampus.There was no obvious colocalization of Pax6 and NeuN during embryonic development, suggesting Pax6 is found primarily in developing progenitor cells. In the adult brain, however, Pax6 maintains neuronal features of some subtypes of neurons, as indicated by 97.1% of Pax6-positive cells co-expressing NeuN in the cerebellum, 40.7% in the olfactory bulb, 38.3% in the cerebrum, and 73.9% in the remaining brain except the hippocampus. Differentiated tyrosine hydroxylase (TH) neurons were observed in the floor of the E11 midbrain where Pax6 was also expressed, but no obvious colocaliztion of TH and Pax6 was detected. No Pax6 expression was observed in TH-expressing areas in the midbrain at E12, E14, and postnatal day 1. These results support the notion that Pax6 plays pivotal roles in specifying neural progenitor cell commitments and maintaining certain mature neuronal fates

    5-HTTLPR Polymorphism Impacts Task-Evoked and Resting-State Activities of the Amygdala in Han Chinese

    Get PDF
    Background: Prior research has shown that the amygdala of carriers of the short allele (s) of the serotonin transporter (5-HTT) gene (5-HTTLPR) have a larger response to negative emotional stimuli and higher spontaneous activity during the resting state than non-carriers. However, recent studies have suggested that the effects of 5-HTTLPR may be specific to different ethnic groups. Few studies have been conducted to address this issue. Methodology/Principal Findings: Blood oxygenation level dependent (BOLD) functional magnetic resonance imaging (fMRI) was conducted on thirty-eight healthy Han Chinese subjects (l/l group, n = 19; s/s group, n = 19) during the resting state and during an emotional processing task. Compared with the s/s group, the l/l group showed significantly increased regional homogeneity or local synchronization in the right amygdala during the resting state (|t|.2.028, p,0.05, corrected), but no significant difference was found in the bilateral amygdala in response to negative stimuli in the emotional processing task. Conclusions/Significance: 5-HTTLPR can alter the spontaneous activity of the amygdala in Han Chinese. However, the effect of 5-HTTLPR on the amygdala both in task state and resting state in Asian population was no similar with Caucasians. The

    Perfect numbers and Fibonacci primes (I)

    No full text
    • …
    corecore