110 research outputs found

    Macrospin approximation and quantum effects in models for magnetization reversal

    Full text link
    The thermal activation of magnetization reversal in magnetic nanoparticles is controlled by the anisotropy-energy barrier. Using perturbation theory, exact diagonalization and stability analysis of the ferromagnetic spin-s Heisenberg model with coupling or single-site anisotropy, we study the effects of quantum fluctuations on the height of the energy barrier. Opposed to the classical case, there is no critical anisotropy strength discriminating between reversal via coherent rotation and via nucleation/domain-wall propagation. Quantum fluctuations are seen to lower the barrier depending on the anisotropy strength, dimensionality and system size and shape. In the weak-anisotropy limit, a macrospin model is shown to emerge as the effective low-energy theory where the microscopic spins are tightly aligned due to the ferromagnetic exchange. The calculation provides explicit expressions for the anisotropy parameter of the effective macrospin. We find a reduction of the anisotropy-energy barrier as compared to the classical high spin-s limit.Comment: 10 pages, 11 figure

    The Dynamical Cluster Approximation: Non-Local Dynamics of Correlated Electron Systems

    Get PDF
    We recently introduced the dynamical cluster approximation(DCA), a new technique that includes short-ranged dynamical correlations in addition to the local dynamics of the dynamical mean field approximation while preserving causality. The technique is based on an iterative self-consistency scheme on a finite size periodic cluster. The dynamical mean field approximation (exact result) is obtained by taking the cluster to a single site (the thermodynamic limit). Here, we provide details of our method, explicitly show that it is causal, systematic, Φ\Phi-derivable, and that it becomes conserving as the cluster size increases. We demonstrate the DCA by applying it to a Quantum Monte Carlo and Exact Enumeration study of the two-dimensional Falicov-Kimball model. The resulting spectral functions preserve causality, and the spectra and the CDW transition temperature converge quickly and systematically to the thermodynamic limit as the cluster size increases.Comment: 19 pages, 13 postscript figures, revte

    Organization agility in Sri Lankan software industry

    Get PDF
    Agile Project management (APM) and Agile Software Development (ASD) are two widely discussed topics in the software industry. Since the inception of Agile Manifesto in 2001, many organizations have implemented agile methods with many more planning agile transitions. One of the core aspects of APM is adding value to the customer, which in turn provides high percentage of Return on Investment (ROI) to the organization. Consequently, Sri Lankan software industry needs to be much more agile with comparison to other countries to compete in the ever so challenging global software industry. The first objective of this research was to identify the agile implementation success factors in which influence the organizations to be agile. Second objective was to determine the level of implementation of agile success factors in the Sri Lankan software organizations, finally determine the organizational agility of the Sri Lankan software industry by analyzing the level of implementation of the identified success factors in organization. Research does not consider whether an organization has implemented a specific agile methodology but consider general traits or practices that are "agile." Research was carried out by considering 9 main agile implementation success factors: Customer satisfaction, customer collaboration, customer commitment, decision time, corporate culture, control, personal characteristics, social culture, and training and learning. These factors are categorized in to two broad categories: Organizational factors and people factors. Overall research findings evidenced that organizational agility in Sri Lankan software industry is "Highly agile" with respect to organizational factors with more than 60% of average responses, and "Very highly agile" with respect to people factors with more than 80% of average responses

    Transition metal-like carbocatalyst

    Get PDF
    Catalytic cleavage of strong bonds including hydrogen-hydrogen, carbon-oxygen, and carbon-hydrogen bonds is a highly desired yet challenging fundamental transformation for the production of chemicals and fuels. Transition metal-containing catalysts are employed, although accompanied with poor selectivity in hydrotreatment. Here we report metal-free nitrogen-assembly carbons (NACs) with closely-placed graphitic nitrogen as active sites, achieving dihydrogen dissociation and subsequent transformation of oxygenates. NACs exhibit high selectivity towards alkylarenes for hydrogenolysis of aryl ethers as model bio-oxygenates without over-hydrogeneration of arenes. Activities originate from cooperating graphitic nitrogen dopants induced by the diamine precursors, as demonstrated in mechanistic and computational studies. We further show that the NAC catalyst is versatile for dehydrogenation of ethylbenzene and tetrahydroquinoline as well as for hydrogenation of common unsaturated functionalities, including ketone, alkene, alkyne, and nitro groups. The discovery of nitrogen assembly as active sites can open up broad opportunities for rational design of new metal-free catalysts for challenging chemical reactions.The Ames Laboratory is operated for the U.S. DOE by Iowa State University under Contract No. DE‐AC02‐07CH11358. The computational simulations were performed at the OU Supercomputing Center for Education and Research and the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility, and were supported by the U.S. Department of Energy, Basic Energy Sciences (Grant DE-SC0020300). Open Access fees paid for in whole or in part by the University of Oklahoma Libraries.Ye
    corecore