411 research outputs found
Optical extinction, refractive index, and multiple scattering for suspensions of interacting colloidal particles
We provide a general microscopic theory of the scattering cross-section and
of the refractive index for a system of interacting colloidal particles, exact
at second order in the molecular polarizabilities. In particular: a) we show
that the structural features of the suspension are encoded into the forward
scattered field by multiple scattering effects, whose contribution is essential
for the so-called "optical theorem" to hold in the presence of interactions; b)
we investigate the role of radiation reaction on light extinction; c) we
discuss our results in the framework of effective medium theories, presenting a
general result for the effective refractive index valid, whatever the
structural properties of the suspension, in the limit of particles much larger
than the wavelength; d) by discussing strongly-interacting suspensions, we
unravel subtle anomalous dispersion effects for the suspension refractive
index.Comment: Submitted to Journal of Chemical Physics 37 pages, 4 figure
Turning light into a liquid via atomic coherence
We study a four level atomic system with electromagnetically induced
transparency with giant and susceptibilities of
opposite signs. This system would allow to obtain multidimensional solitons and
light condensates with surface tension properties analogous to those of usual
liquids
Polyelectrolyte Persistence Length: Attractive Effect of Counterion Correlations and Fluctuations
The persistence length of a single, strongly charged, stiff polyelectrolyte
chain is investigated theoretically. Path integral formulation is used to
obtain the effective electrostatic interaction between the monomers. We find
significant deviations from the classical Odijk, Skolnick and Fixman (OSF)
result. An induced attraction between monomers is due to thermal fluctuations
and correlations between bound counterions. The electrostatic persistence
length is found to be smaller than the OSF value and indicates a possible
mechanical instability (collapse) for highly charged polyelectrolytes with
multivalent counterions. In addition, we calculate the amount of condensed
counterions on a slightly bent polyelectrolyte. More counterions are found to
be adsorbed as compared to the Manning condensation on a cylinder.Comment: 5 pages, 1 ps figur
Quantum computation with linear optics
We present a constructive method to translate small quantum circuits into
their optical analogues, using linear components of present-day quantum optics
technology only. These optical circuits perform precisely the computation that
the quantum circuits are designed for, and can thus be used to test the
performance of quantum algorithms. The method relies on the representation of
several quantum bits by a single photon, and on the implementation of universal
quantum gates using simple optical components (beam splitters, phase shifters,
etc.). The optical implementation of Brassard et al.'s teleportation circuit, a
non-trivial 3-bit quantum computation, is presented as an illustration.Comment: LaTeX with llncs.cls, 11 pages with 5 postscript figures, Proc. of
1st NASA Workshop on Quantum Computation and Quantum Communication (QCQC 98
A geometrical setting for the classification of multilayers
We elaborate on the consequences of the factorization of the transfer matrix
of any lossless multilayer in terms of three basic matrices of simple
interpretation. By considering the bilinear transformation that this transfer
matrix induces in the complex plane, we introduce the concept of multilayer
transfer function and study its properties in the unit disk. In this
geometrical setting, our factorization translates into three actions that can
be viewed as the basic pieces for understanding the multilayer behavior.
Additionally, we introduce a simple trace criterion that allows us to classify
multilayers in three types with properties closely related to one (and only
one) of these three basic matrices. We apply this approach to analyze some
practical examples that are representative of these types of matrices.Comment: 8 pages, 5 figures. To be published in J. Opt. Soc. Am.
Multi-threshold second-order phase transition
We present a theory of the multi-threshold second-order phase transition, and
experimentally demonstrate the multi-threshold second-order phase transition
phenomenon. With carefully selected parameters, in an external cavity diode
laser system, we observe second-order phase transition with multiple (three or
four) thresholds in the measured power-current-temperature three dimensional
phase diagram. Such controlled death and revival of second-order phase
transition sheds new insight into the nature of ubiquitous second-order phase
transition. Our theory and experiment show that the single threshold
second-order phase transition is only a special case of the more general
multi-threshold second-order phase transition, which is an even richer
phenomenon.Comment: 5 pages, 3 figure
Critical Behavior of Hadronic Fluctuations and the Effect of Final-State Randomization
The critical behaviors of quark-hadron phase transition are explored by use
of the Ising model adapted for hadron production. Various measures involving
the fluctuations of the produced hadrons in bins of various sizes are examined
with the aim of quantifying the clustering properties that are universal
features of all critical phenomena. Some of the measures involve wavelet
analysis. Two of the measures are found to exhibit the canonical power-law
behavior near the critical temperature. The effect of final-state randomization
is studied by requiring the produced particles to take random walks in the
transverse plane. It is demonstrated that for the measures considered the
dependence on the randomization process is weak. Since temperature is not a
directly measurable variable, the average hadronic density of a portion of each
event is used as the control variable that is measurable. The event-to-event
fluctuations are taken into account in the study of the dependence of the
chosen measures on that control variable. Phenomenologically verifiable
critical behaviors are found and are proposed for use as a signature of
quark-hadron phase transition in relativistic heavy-ion collisions.Comment: 17 pages (Latex) + 24 figures (ps file), submitted to Phys. Rev.
Ancient and modern genomics of the Ohlone Indigenous population of California
Traditional knowledge, along with archaeological and linguistic evidence, documents that California supports cultural and linguistically diverse Indigenous populations. Studies that have included ancient genomes in this region, however, have focused primarily on broad-scale migration history of the North American continent, with relatively little attention to local population dynamics. Here, in a partnership involving researchers and the Muwekma Ohlone tribe, we analyze genomic data from ancient and present-day individuals from the San Francisco Bay Area in California: 12 ancient individuals dated to 1905 to 1826 and 601 to 184 calibrated years before the present (cal BP) from two archaeological sites and eight present-day members of the Muwekma Ohlone tribe, whose ancestral lands include these two sites. We find that when compared to other ancient and modern individuals throughout the Americas, the 12 ancient individuals from the San Francisco Bay Area cluster with ancient individuals from Southern California. At a finer scale of analysis, we find that the 12 ancient individuals from the San Francisco Bay Area have distinct ancestry from the other groups and that this ancestry has a component of continuity over time with the eight present-day Muwekma Ohlone individuals. These results add to our understanding of Indigenous population history in the San Francisco Bay Area, in California, and in western North America more broadly
Independent Ion Migration in Suspensions of Strongly Interacting Charged Colloidal Spheres
We report on sytematic measurements of the low frequency conductivity in
aequous supensions of highly charged colloidal spheres. System preparation in a
closed tubing system results in precisely controlled number densities between
1E16/m3 and 1E19/m^3 (packing fractions between 1E-7 and 1E-2) and electrolyte
concentrations between 1E-7 and 1E-3 mol/l. Due to long ranged Coulomb
repulsion some of the systems show a pronounced fluid or crystalline order.
Under deionized conditions we find s to depend linearily on the packing
fraction with no detectable influence of the phase transitions. Further at
constant packing fraction s increases sublinearily with increasing number of
dissociable surface groups N. As a function of c the conductivity shows
pronounced differences depending on the kind of electrolyte used. We propose a
simple yet powerful model based on independent migration of all species present
and additivity of the respective conductivity contributions. It takes account
of small ion macro-ion interactions in terms of an effectivly transported
charge. The model successfully describes our qualitatively complex experimental
observations. It further facilitates quantitative estimates of conductivity
over a wide range of particle and experimental parameters.Comment: 32 pages, 17 figures, 2 tables, Accepted by Physical Review
- …