1,112 research outputs found

    Education in Soil Science: the Italian approach

    Get PDF
    The Italian Society of Soil Science (SISS) was founded in Florence on February 18th, 1952. It is an association legally acknowledged by Decree of the President of the Italian Republic in February 1957. The Society is member of the International Union of Soil Sciences (IUSS) of the European Confederation of Soil Science Societies (ECSSS) and collaborates with several companies, institutions and organizations having similar objectives or policy aspects. SISS promotes progress, coordination and dissemination of soil science and its applications encouraging relationships and collaborations among soil lovers. Within the SISS there are Working Groups and Technical Committees for specific issues of interest. In particular: \u2022 the Working Group on Pedotechniques; \u2022 the Working Group on Hydromorphic and Subaqueous Soils and \u2022 the Technical Committee for Soil Education and Public Awareness. In this communication we wish to stress the activities developed since its foundation by SISS to spread soil awareness and education in Italy through this last Technical Committee, focusing also the aspect concerning grants for young graduates and PhD graduates to stimulate the involvement of young people in the field of soil science

    Spatial microbial community structure and biodiversity analysis in "extreme" hypersaline soils of a semiarid Mediterranean area

    Get PDF
    In recent years specific attention has been paid on the biotechnological potential of microorganisms in extreme soils, in particular in saline soils. Salinity is one of the most widespread soil degradation processes on the Earth, and saline soils can be defined as extreme soils or border line habitats in which several factors, as high salt content, may limit the growth of organisms. In this study, the physical, chemical and microbiological soil properties were investigated in the shallower horizon of natural salt-affected soils in Sicily (Italy). The main aim of the research was to evaluate the structure and diversity of bacterial and archaeal communities by terminal-restriction fragment length polymorphism (T-RFLP) according to arbitrary different classes of vegetation and salt crust cover in soils. Furthermore, the structure of microbial communities was assessed considering the heterogeneity of physical-chemical properties of the habitat under investigation, as a function of vegetation, crust cover, and salinity classes. The results provided information on the type of distribution of different microbial community composition and diversity as a function of both vegetation and crust cover as well as salinity classes. In particular, the archaeal community showed a richness and diversity significantly affected by the spatial gradients of soil salinity, conversely, the bacterial one showed a decreasing trend with increasing gradient of soil salinity. The T-RFLP cluster analysis showed the formation of two groups for both bacterial and archaeal community, significantly (. p<. 0.05) influenced by sand and silt content, electrical conductivity (EC. e), vegetation cover percentage, salt crust and for by texture composition. In particular, the discriminant analysis obtained for the different salt crust classes for archaeal community stressed the membership of one of the two clusters to the class with the lower salt crust percentage (0-40%)

    Salinity and Bacterial Diversity: To What Extent Does the Concentration of Salt Affect the Bacterial Community in a Saline Soil?

    Get PDF
    In this study, the evaluation of soil characteristics was coupled with a pyrosequencing analysis of the V2-V3 16S rRNA gene region in order to investigate the bacterial community structure and diversity in the A horizon of a natural saline soil located in Sicily (Italy). The main aim of the research was to assess the organisation and diversity of microbial taxa using a spatial scale that revealed physical and chemical heterogeneity of the habitat under investigation. The results provided information on the type of distribution of different bacterial groups as a function of spatial gradients of soil salinity and pH. The analysis of bacterial 16S rRNA showed differences in bacterial composition and diversity due to a variable salt oncentration in the soil. The bacterial community showed a statistically significant spatial variability. Some bacterial phyla appeared spread in the whole area, whatever the salinity gradient. It emerged therefore that a patchy saline soil can not contain just a single microbial community selected to withstand extreme osmotic phenomena, but many communities that can be variously correlated to one or more environmental parameters. Sequences have been deposited to the SRA database and can be accessed on ID Project PRJNA241061

    Distribution patterns of fungi and bacteria in saline soils

    Get PDF
    Saline soils are environments characterized by uneven temporal and spatial water distribution and localized high concentrations of salts. Spatial distribution patterns of fungi and bacteria in saline soils, and the link between microbial community dynamics and salts accumulation are critical issues throughout the world (Ettema, Wardle 2002). This study was focused on spatial distribution patterns of soil fungi and bacteria in a saline soil located in Piana del Signore (Gela, Italy) where some ecological variables acted as shaping factors in aboveground and belowground communities distribution. Bacterial, archaeal, and fungal communities diversity and distribution in ten soil sites (A horizons, 0-10cm), were characterized by 16S rDNA genes with T-RFLP method. Pyrosequencing-based analysis of the V2-V3 16S rRNA gene region was performed to characterize the sites on the basis of bacterial groups distribution, diversity and assemblage. To better investigate the ecological niches of some of the main culturable species of this environment, it was carried out the isolation and identification of the fungal flora from soil, using Warcup plating within two different salt concentrations (NaCl 5% and 15%), combined with a metabolic screening of some representative isolates (Di Lonardo et al., 2013). A natural gradient of soil salinity shaped the distribution of microbial species in the environment. The different concentration of salt (NaCl), and calcium sulfate (Ca2SO4) in soil influenced the structure and distribution of the microbial communities even when comparing neighboring areas within a 50 m scale. Some bacterial phyla, together with some fungal species, appeared spread in the whole area, independently of the salinity gradient, thus highlighting the presence of organisms with a very different survival strategy in such an extreme environment. In conclusion, the organization and diversity of microbial taxa at a spatial scale reflected the scales of heterogeneity of physical and chemical properties of the habitat under investigation

    A natural saline soil as a model for understanding to what extent the concentration of salt affects the distribution of microorganisms

    Get PDF
    Soils preserve and sustain life. Their health and functioning are crucial for crop production and for the maintenance of major ecosystem services. Human induced salinity is one of the main soil threats that reduces soil fertility and affect crop yields. In recent times, great attention has been paid to the general shortage of arable land and to the increasing demand for ecological restoration of areas affected by salinization processes. Despite the diffuse interest on the effects of salinization on plants\u2019 growth, and all the derived socioeconomic issues, very few studies analyzed the ecology of the microbial species in naturally saline soils and the resilience of biological fertility in these extreme habitats. Microorganisms inhabiting such environments may share a strategy, may have developed multiple adaptations for maintaining their populations, and cope eventually to extreme conditions by altruistic or cooperative behaviors for maintaining their metabolism active. The understanding and the knowledge of the composition and distribution of microbial communities in natural hypersaline soils can be interesting for ecological reasons but also to develop new restoration strategy where soil fertility was compromised by natural accidents or human mismanagement. The aim of this research was to provide specific information on saline soils in Italy, stressing mainly their distribution, the socioeconomic issues and the understanding of the characterizing ecological processes. Moreover, natural saline soils were used as a model for understanding to what extent the concentration of salt can affect some basic microbial processes. In the present study, physical, chemical and microbiological soil properties were investigated in the shallower horizons of natural salt affected soils in Sicily (Italy), where some ecological contrasting variables acted as strong drivers in fungal and bacterial spatial distribution. Furthermore, the interface between biological and geochemical components in the surface of that peculiar habitat was investigated to evaluate the organization and diversity of the phototrophic and heterotrophic microorganisms. Sixteen soil samples from A horizons were collected according to a random sampling scheme. Bacterial and archaeal communities were characterized by their 16S rDNA genes with T-RFLP method. A total of 92 genera were identified from the 16S pyrosequencing analysis suggesting that cyanobacteria and communities of sulfur bacteria might directly or indirectly promote the formation of protective envelope. Some bacterial phyla appeared spread in the whole area, whatever the salinity gradient, while other groups showed a distribution linked to very compartmentalised soil properties, such as the presence of saline crusts in the soil surface. Results show that saline soils couldn\u2019t contain just one single microbial community selected to withstand extreme osmotic phenomena, but many communities that can be variously correlated to one or more environmental parameters having great importance for the maintenance of the overall homeostasis

    In situ remediation of polluted Spolic Technosols using Ca(OH)2 and smectitic marlstone

    Get PDF
    Technosols are soils developed on non-traditional substrates and containing large quantities of materials mostly due to intensive human industrial activity, such as artefacts. The increasing number of sites affected by Technosols and their impact on the environment as growing media for plants or as source of pollutants require an understanding of their functioning and evolution, above all the knowledge on the transport of toxic substances from contaminated technogenic soils to groundwater. A case study on properties, remediation and evaluation of Technosols made up by vitrified fly ash and glass\u2013ceramics in Italy was carried out. Original technogenic soils, classified as Spolic Technosols (ecotoxic),were pedotechnically in situ remediated by adding smectitic marlstone and Ca(OH)2. Chemical analysis on samples from piezometers showed the presence of harmful heavy metals in groundwater. By means of boreholes and soil profiles the newsoils generated, after remediation, were physically and chemically characterized and classified as Spolic Technosols (calcaric). Analysis on soil toxicity and leaching tests showed the effectiveness of the remediation and the mobility reduction of some potentially harmful elements according to the environmental Italian regulation

    Proposta de um mecanismo de busca baseado na web semântica para objetos de aprendizagem no domínio da Matemática

    Get PDF
    Neste trabalho é proposta uma ontologia para OAs de Matemática como suporte a um mecanismo de busca desenvolvido durante este trabalho. A ontologia foi desenvolvida na ferramenta Protégé, utilizando a linguagem OWL (Web Ontology Language) e os conceitos para esta foram baseados nos Parâmetros Curriculares Nacionais, documento este disponibilizado pelo MEC. A partir da comparação entre as métricas definidas foram obtidos os resultados para a avaliação do uso de uma ontologia no mecanismo de busca para a obtenção de resultados mais relevantes e em menos tempo. Os resultados obtidos comprovaram a eficiência desta forma de pesquisa por OAs, o que permite a sua utilização pela comunidade escolar

    Role of land set-up systems on soil (Physicochemical) conditions

    Get PDF
    Land reclamation and drainage networks represent one of the most ancient human modifications of the Italian soilscape, where tailored land set-up systems were developed in agro-and forest-ecosystems in three millennia of man’s activity. Most of once manually maintained land settings are currently scarcely working or even disappeared because of the cost needed for their mainte-nance and the advent of mechanization that have simplified the field organization. The scarce attention to the soil experienced in the last decades, has accelerated soil erosion and flooding events, which entailed high costs in terms of money and human lives, but also caused reduction of soil thickness, water holding capacity, and fertility. In view of a sustainable agriculture, it is mandatory to assess the role of land set-up systems, which for centuries have been key in protecting soil from erosion, but also in increasing soil fertility. Such an effort cannot be made without considering the different pedo-climatic conditions and land uses of the Italian ter-ritory, which is different with respect to the past because of the multiple transformations made to favour the mechanization of agriculture. In this review we discuss the main effect of Italian land settings on the soilscape and on soil physicochemical condi-tions. Since land settings were developed centuries ago, detailed information about their effect on specific soil parameters is scarce in the scientific literature; thus, in some case, we provide information gathered in places where land set-up systems are still present. mm

    Poor sleep quality may independently predict suicidal risk in COVID-19 survivors: a 2-year longitudinal study

    Get PDF
    Objective: Multiple symptoms of psychiatric, neurological, and physical illnesses may be part of Post-COVID conditions and may pose COVID-19 survivors a high suicidal risk. Accordingly, we aimed to study factors contributing to suicidal risk in Post COVID-19 patients. Method: Consecutive patients with post COVID-19 conditions were followed for 2 years at the University Hospital of Ferrara at baseline (T0), 6 (T1), 12 (T2), and 24 (T3) months. Demographics, and clinical data for all patients included: disease severity, hospital length of stay, comorbidity, clinical complications, sleep quality, cognitive complaints, anxiety and stress-related symptoms, depressive symptoms, and suicidal ideation. Results: The final sample included 81 patients with post COVID survivors. The mean age was 64 + 10,6 years, 35,8% were females, 65,4% had medical comorbidities, and 69,1% had WHO severe form of COVID forms. At T0 more than 90% of patients showed poor sleep quality, 59.3% reported moderate/severe depressive symptoms, and 51.% experienced anxiety, 25.9% experienced post-traumatic stress symptoms. At T0 suicidal ideation, interested 6.1% and at T3 it increased to 7.4%. In the regression analysis, suicidal ideation at baseline was best predicted by poor sleep quality (O.R. 1.71, p=0.044) and, after 2 years, suicidal ideation was best predicted by poor sleep quality experienced at baseline (OR 67.3, p=0.001). Conclusions: Poor sleep quality may play as an independent predictor of suicidal risk in post-COVID survivors. Evaluating and targeting sleep disturbances in COVID survivors is important to prevent the consequences of disrupted sleep in mental health

    Unique Regulatory Properties of Mesangial Cells Are Genetically Determined in the Rat

    No full text
    Mesangial cells are glomerular cells of stromal origin. During immune complex mediated crescentic glomerulonephritis (Crgn), infiltrating and proliferating pro-inflammatory macrophages lead to crescent formation. Here we have hypothesised that mesangial cells, given their mesenchymal stromal origin, show similar immunomodulatory properties as mesenchymal stem cells (MSCs), by regulating macrophage function associated with glomerular crescent formation. We show that rat mesangial cells suppress conA-stimulated splenocyte proliferation in vitro, as previously shown for MSCs. We then investigated mesangial cell-macrophage interaction by using mesangial cells isolated from nephrotoxic nephritis (NTN)-susceptible Wistar Kyoto (WKY) and NTN-resistant Lewis (LEW) rats. We first determined the mesangial cell transcriptome in WKY and LEW rats and showed that this is under marked genetic control. Supernatant transfer results show that WKY mesangial cells shift bone marrow derived macrophage (BMDM) phenotype to M1 or M2 according to the genetic background (WKY or LEW) of the BMDMs. Interestingly, these effects were different when compared to those of MSCs suggesting that mesangial cells can have unique immunomodulatory effects in the kidney. These results demonstrate the importance of the genetic background in the immunosuppressive effects of cells of stromal origin and specifically of mesangial cell-macrophage interactions in the pathophysiology of crescentic glomerulonephritis
    • …
    corecore