59 research outputs found

    Data-Driven Robust Control for Type 1 Diabetes Under Meal and Exercise Uncertainties

    Get PDF
    We present a fully closed-loop design for an artificial pancreas (AP) which regulates the delivery of insulin for the control of Type I diabetes. Our AP controller operates in a fully automated fashion, without requiring any manual interaction (e.g. in the form of meal announcements) with the patient. A major obstacle to achieving closed-loop insulin control is the uncertainty in those aspects of a patient's daily behavior that significantly affect blood glucose, especially in relation to meals and physical activity. To handle such uncertainties, we develop a data-driven robust model-predictive control framework, where we capture a wide range of individual meal and exercise patterns using uncertainty sets learned from historical data. These sets are then used in the controller and state estimator to achieve automated, precise, and personalized insulin therapy. We provide an extensive in silico evaluation of our robust AP design, demonstrating the potential of this approach, without explicit meal announcements, to support high carbohydrate disturbances and to regulate glucose levels in large clusters of virtual patients learned from population-wide survey data.Comment: Extended version of paper accepted at the 15th International Conference on Computational Methods in Systems Biolog

    Clinical targets for continuous glucose monitoring data interpretation : recommendations from the international consensus on time in range

    Get PDF
    Improvements in sensor accuracy, greater convenience and ease of use, and expanding reimbursement have led to growing adoption of continuous glucose monitoring (CGM). However, successful utilization of CGM technology in routine clinical practice remains relatively low. This may be due in part to the lack of clear and agreed-upon glycemic targets that both diabetes teams and people with diabetes can work toward. Although unified recommendations for use of key CGM metrics have been established in three separate peer-reviewed articles, formal adoption by diabetes professional organizations and guidance in the practical application of these metrics in clinical practice have been lacking. In February 2019, the Advanced Technologies & Treatments for Diabetes (ATTD) Congress convened an international panel of physicians, researchers, and individuals with diabetes who are expert in CGM technologies to address this issue. This article summarizes the ATTD consensus recommendations for relevant aspects of CGM data utilization and reporting among the various diabetes populations

    International Consensus on Use of Continuous Glucose Monitoring.

    Get PDF
    Measurement of glycated hemoglobin (HbA1c) has been the traditional method for assessing glycemic control. However, it does not reflect intra- and interday glycemic excursions that may lead to acute events (such as hypoglycemia) or postprandial hyperglycemia, which have been linked to both microvascular and macrovascular complications. Continuous glucose monitoring (CGM), either from real-time use (rtCGM) or intermittently viewed (iCGM), addresses many of the limitations inherent in HbA1c testing and self-monitoring of blood glucose. Although both provide the means to move beyond the HbA1c measurement as the sole marker of glycemic control, standardized metrics for analyzing CGM data are lacking. Moreover, clear criteria for matching people with diabetes to the most appropriate glucose monitoring methodologies, as well as standardized advice about how best to use the new information they provide, have yet to be established. In February 2017, the Advanced Technologies & Treatments for Diabetes (ATTD) Congress convened an international panel of physicians, researchers, and individuals with diabetes who are expert in CGM technologies to address these issues. This article summarizes the ATTD consensus recommendations and represents the current understanding of how CGM results can affect outcomes

    Machine Learning-Based Anomaly Detection Algorithms to Alert Patients Using Sensor Augmented Pump of Infusion Site Failures

    No full text
    Background: Personal insulin pumps have shown to be effective in improving the quality of therapy for people with type 1 diabetes (T1D). However, the safety of this technology is limited by the possible infusion site failures, which are linked with hyperglycemia and ketoacidosis. Thanks to the large availability of collected data provided by modern therapeutic technologies, machine learning algorithms have the potential to provide new way to identify failures early and avert adverse events. Methods: A clinical dataset (N = 20) is used to evaluate a novel method for detecting real-time infusion site failures using unsupervised anomaly detection algorithms, previously proposed and developed on in-silico data. An adapted feature engineering procedure is introduced to make the method able to operate in the absence of a closed-loop (CL) system and meal announcements. Results: In the optimal configuration, we obtained a performance of 0.75 Sensitivity (15 out of 20 total failures detected) and 0.08 FP/day, outperforming previously proposed literature algorithms. The algorithm was able to anticipate the replacement of the malfunctioning infusion sets by ~2 h on average. Conclusions: On the considered dataset, the proposed algorithm showed the potential to improve the safety of patients treated with sensor-augmented pump systems

    Control to range for diabetes: functionality and modular architecture",

    No full text
    BACKGROUND: Closed-loop control of type 1 diabetes is receiving increasing attention due to advancement in glucose sensor and insulin pump technology. Here the function and structure of a class of control algorithms designed to exert control to range, defined as insulin treatment optimizing glycemia within a predefined target range by preventing extreme glucose fluctuations, are studied. METHODS: The main contribution of the article is definition of a modular architecture for control to range. Emphasis is on system specifications rather than algorithmic realization. The key system architecture elements are two interacting modules: range correction module, which assesses the risk for incipient hyper- or hypoglycemia and adjusts insulin rate accordingly, and safety supervision module, which assesses the risk for hypoglycemia and attenuates or discontinues insulin delivery when necessary. The novel engineering concept of range correction module is that algorithm action is relative to a nominal open-loop strategy—a predefined combination of basal rate and boluses believed to be optimal under nominal conditions. RESULTS: A proof of concept of the feasibility of our control-to-range strategy is illustrated by using a prototypal implementation tested in silico on patient use cases. These functional and architectural distinctions provide several advantages, including (i) significant insulin delivery corrections are only made if relevant risks are detected; (ii) drawbacks of integral action are avoided, e.g., undershoots with consequent hypoglycemic risks; (iii) a simple linear model is sufficient and complex algorithmic constraints are replaced by safety supervision; and (iv) the nominal profile provides straightforward individualization for each patient. CONCLUSIONS: We believe that the modular control-to-range system is the best approach to incremental development, regulatory approval, industrial deployment, and clinical acceptance of closed-loop control for diabetes

    Implications of meal library & meal detection to glycemic control of type I diabetes mellitus throug

    No full text
    Recent technological progress in insulin pumps and continuous glucose monitors (CGM) are enabling development of an artificial \u3b2-cell that will allow superior glycemic control for patients with type 1 diabetes mellitus (T1DM). A control algorithm that is implemented in such system will need to regulate basal insulin as well as to reject unmeasured disturbances, such as meals. A traditional approach is to combine feed-forward control as a means to overcome meal disturbances, where the user informs the controller on a meal and estimates the size of that together with PID control or Model Predictive Control (MPC) to address the regulation problem. This approach fails with T1DM adolescents and children because they often forget to give a pre-meal bolus and are poor at estimating meal sizes. A novel approach to overcome this problem is suggested in this paper by the combination of a meal library and a meal detection algorithm in the framework of Model Predictive Control (MPC). In this work, the challenging problem of an unannounced mixed meal is being addressed using this novel combination. Copyright \ua9 2007 International Federation of Automatic Control All Rights Reserved
    • 

    corecore