231 research outputs found

    Cryptic Haploid Stages in the Life Cycle of Leathesia marina (Chordariaceae, Phaeophyceae) Under In Vitro Culture

    Get PDF
    We evaluated the life cycle of Leathesia marina through molecular analyses, culture studies, morphological observations, and ploidy measurements. Macroscopic sporophytes were collected from two localities in Atlantic Patagonia and were cultured under long-day (LD) and short-day (SD) conditions. Molecular identification of the microscopic and macroscopic phases was performed through the cox3 and rbcL genes and the phylogeny was assessed on the basis of single gene and concatenated datasets. Nuclear ploidy of each phase was estimated from the DNA contents of individual nuclei through epifluorescence microscopy and flow cytometry. Molecular results confirmed the identity of the Argentinian specimens as L. marina and revealed their conspecificity with L. marina from New Zealand, Germany, and Japan. The sporophytic macrothalli (2n) released mitospores from plurilocular sporangia, which developed into globular microthalli (2n), morphologically similar to the sporophytes but not in size, constituting a generation of small diploid thalli, with a mean fluorescent nuclei cross-sectional area of 3.21 ± 0.7 μm2. The unilocular sporangia released meiospores that developed two morphologically different types of microthalli: erect branched microthalli (n) with a nuclear area of 1.48 ± 0.07 µm2 that reproduces asexually, and prostrate branched microthalli (n) with a nuclear area of 1.24 ± 0.10 µm2 that reproduces sexually. The prostrate microthalli released gametes in LD conditions, which merged and produced macroscopic thalli with a nuclear cross-sectional area of 3.45 ± 0.09 µm2. Flow cytometry confirmed that the erect and prostrate microthalli were haploid and that the globular microthalli and macrothalli were diploid.Fil: Poza, Ailen Melisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; ArgentinaFil: Santiañez, Wilfred John E.. Hokkaido University; Japón. University of the Philippines Diliman; FilipinasFil: Croce, Maria Emilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; ArgentinaFil: Gauna, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentina. Universidad Nacional del Sur. Departamento de Biología, Bioquímica y Farmacia; ArgentinaFil: Kogame, Kazuhiro. Hokkaido University; JapónFil: Parodi, Elisa Rosalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto Argentino de Oceanografía. Universidad Nacional del Sur. Instituto Argentino de Oceanografía; Argentin

    Palaeomagnetism of the Ordovician dolerites of the Crozon Peninsula (France)

    Full text link
    In order to obtain a Lower Palaeozoic pole for the Armorican Massif and to test the origin of the Ibero-Armorican arc, the Ordovician dolerites of the Crozon peninsula have been palaeomagnetically studied. The samples show a multicomponent magnetization which has been revealed by AF and thermal demagnetization and thoroughly investigated with rock magnetic experiments, polished section examinations and K/Ar dating. Four groups of directions have been recognized, often superimposed on each other in an individual sample. One component (D) has always the lowest blocking temperatures and coercivities and is considered to be of viscous origin, acquired recently in situ or in the laboratory during storage. Two components (A and B) are interpreted to be of secondary origin and to correspond to the observed K/Ar age distribution between 300 and 190 Myr. These ages represent the time interval between two regional thermo-tectonic events, associated with the Hercynian orogeny and the intrusion of dykes related to the early opening of the Central Atlantic Ocean and the Bay of Biscay. A fourth component (C) could be of Ordovician or younger Palaeozoic age; it is not clear whether the age of the magnetization is pre- or post-folding, but a pre-folding age would yield a direction of magnetization similar to Ordovician results from the Iberian peninsula. The latter interpretation suggests a fairly high palaeolatitude, which is in agreement with a glacio-marine postulated for sediments overlying the dolerite sills.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73214/1/j.1365-246X.1983.tb03785.x.pd

    Abscisic acid induced a negative geotropic response in dark-incubated Chlamydomonas reinhardtii

    Get PDF
    © 2019, The Author(s). The phytohormone abscisic acid (ABA) plays a role in stresses that alter plant water status and may also regulate root gravitropism and hydrotropism. ABA also exists in the aquatic algal progenitors of land plants, but other than its involvement in stress responses, its physiological role in these microorganisms remains elusive. We show that exogenous ABA significantly altered the HCO3− uptake of Chamydomonas reinhardtii in a light-intensity-dependent manner. In high light ABA enhanced HCO3− uptake, while under low light uptake was diminished. In the dark, ABA induced a negative geotropic movement of the algae to an extent dependent on the time of sampling during the light/dark cycle. The algae also showed a differential, light-dependent directional taxis response to a fixed ABA source, moving horizontally towards the source in the light and away in the dark. We conclude that light and ABA signal competitively in order for algae to position themselves in the water column to minimise photo-oxidative stress and optimise photosynthetic efficiency. We suggest that the development of this response mechanism in motile algae may have been an important step in the evolution of terrestrial plants and that its retention therein strongly implicates ABA in the regulation of their relevant tropisms

    Modèle éolien d'âge quaternaire conservé dans la région mancelle

    No full text
    Dangeard L. Modèle éolien d'âge quaternaire conservé dans la région mancelle. In: Bulletin de l'Association de géographes français, N°175-176, 23e année, Janvier-février 1946. pp. 42-44
    corecore