12,572 research outputs found
Dilaton-Axion hair for slowly rotating Kerr black holes
Campbell et al. demonstrated the existence of axion ``hair'' for Kerr black
holes due to the non-trivial Lorentz Chern-Simons term and calculated it
explicitly for the case of slow rotation. Here we consider the dilaton coupling
to the axion field strength, consistent with low energy string theory and
calculate the dilaton ``hair'' arising from this specific axion source.Comment: 13 pages + 1 fi
Continuous loading of a non-dissipative atom trap
We study theoretically a scheme in which particles from an incident beam are
trapped in a potential well when colliding with particles already present in
the well. The balance between the arrival of new particles and the evaporation
of particles from the trapped cloud leads to a steady-state that we
characterize in terms of particle number and temperature. For a cigar shaped
potential, different longitudinal and transverse evaporation thresholds can be
chosen. We show that a resonance occur when the transverse evaporation
threshold coincides with the energy of the incident particles. It leads to a
dramatic increase in phase space density with respect to the incident beam.Comment: 7 pages, 2 figure
Geometric phase gate on an optical transition for ion trap quantum computation
We propose a geometric phase gate of two ion qubits that are encoded in two
levels linked by an optical dipole-forbidden transition. Compared to hyperfine
geometric phase gates mediated by electric dipole transitions, the gate has
many interesting properties, such as very low spontaneous emission rates,
applicability to magnetic field insensitive states, and use of a co-propagating
laser beam geometry. We estimate that current technology allows for
infidelities of around 10.Comment: 4 pages, 2 figure
Computation of conical intersections by using perturbation techniques
Multiconfigurational second-order perturbation theory, both in its single-state multiconfigurational second-order perturbation theory (CASPT2) and multistate (MS-CASPT2) formulations, is used to search for minima on the crossing seams between different potential energy hypersurfaces of electronic states in several molecular systems. The performance of the procedures is tested and discussed, focusing on the problem of the nonorthogonality of the single-state perturbative solutions. In different cases the obtained structures and energy differences are compared with available complete active space self-consistent field and multireference configuration interaction solutions. Calculations on different state crossings in LiF, formaldehyde, the ethene dimer, and the penta-2,4-dieniminium cation illustrate the discussions. Practical procedures to validate the CASPT2 solutions in polyatomic systems are explored, while it is shown that the application of the MS-CASPT2 procedure is not straightforward and requires a careful analysis of the stability of the results with the quality of the reference wave functions, that is, the size of the active [email protected]
[email protected]
[email protected]
The quadrupole moment of slowly rotating fluid balls
In this paper we use the second order formalism of Hartle to study slowly and
rigidly rotating stars with focus on the quadrupole moment of the object. The
second order field equations for the interior fluid are solved numerically for
different classes of possible equations of state and these solutions are then
matched to a vacuum solution that includes the general asymptotically flat
axisymmetric metric to second order, using the Darmois-Israel procedure. For
these solutions we find that the quadrupole moment differs from that of the
Kerr metric, as has also been found for some equations of state in other
studies. Further we consider the post-Minkowskian limit analytically. In the
paper we also illustrate how the relativistic multipole moments can be
calculated from a complex gravitational potential.Comment: 13 pages, 5 figure
Encoded Recoupling and Decoupling: An Alternative to Quantum Error Correcting Codes, Applied to Trapped Ion Quantum Computation
A recently developed theory for eliminating decoherence and design
constraints in quantum computers, ``encoded recoupling and decoupling'', is
shown to be fully compatible with a promising proposal for an architecture
enabling scalable ion-trap quantum computation [D. Kielpinski et al., Nature
417, 709 (2002)]. Logical qubits are encoded into pairs of ions. Logic gates
are implemented using the Sorensen-Molmer (SM) scheme applied to pairs of ions
at a time. The encoding offers continuous protection against collective
dephasing. Decoupling pulses, that are also implemented using the SM scheme
directly to the encoded qubits, are capable of further reducing various other
sources of qubit decoherence, such as due to differential dephasing and due to
decohered vibrational modes. The feasibility of using the relatively slow SM
pulses in a decoupling scheme quenching the latter source of decoherence
follows from the observed 1/f spectrum of the vibrational bath.Comment: 12 pages, no figure
Quantum gate in the decoherence-free subspace of trapped ion qubits
We propose a geometric phase gate in a decoherence-free subspace with trapped
ions. The quantum information is encoded in the Zeeman sublevels of the
ground-state and two physical qubits to make up one logical qubit with ultra
long coherence time. Single- and two-qubit operations together with the
transport and splitting of linear ion crystals allow for a robust and
decoherence-free scalable quantum processor. For the ease of the phase gate
realization we employ one Raman laser field on four ions simultaneously, i.e.
no tight focus for addressing. The decoherence-free subspace is left neither
during gate operations nor during the transport of quantum information.Comment: 6 pages, 6 figure
Quantum computation with two-level trapped cold ions beyond Lamb-Dicke limit
We propose a simple scheme for implementing quantum logic gates with a string
of two-level trapped cold ions outside the Lamb-Dicke limit. Two internal
states of each ion are used as one computational qubit (CQ) and the collective
vibration of ions acts as the information bus, i.e., bus qubit (BQ). Using the
quantum dynamics for the laser-ion interaction as described by a generalized
Jaynes-Cummings model, we show that quantum entanglement between any one CQ and
the BQ can be coherently manipulated by applying classical laser beams. As a
result, universal quantum gates, i.e. the one-qubit rotation and two-qubit
controlled gates, can be implemented exactly. The required experimental
parameters for the implementation, including the Lamb-Dicke (LD) parameter and
the durations of the applied laser pulses, are derived. Neither the LD
approximation for the laser-ion interaction nor the auxiliary atomic level is
needed in the present scheme.Comment: 12 pages, no figures, to appear in Phys. Rev.
On the Conformal forms of the Robertson-Walker metric
All possible transformations from the Robertson-Walker metric to those
conformal to the Lorentz-Minkowski form are derived. It is demonstrated that
the commonly known family of transformations and associated conformal factors
are not exhaustive and that there exists another relatively less well known
family of transformations with a different conformal factor in the particular
case that K = -1. Simplified conformal factors are derived for the special case
of maximally-symmetric spacetimes. The full set of all possible
cosmologically-compatible conformal forms is presented as a comprehensive
table. A product of the analysis is the determination of the set-theoretical
relationships between the maximally symmetric spacetimes, the Robertson-Walker
spacetimes, and functionally more general spacetimes. The analysis is preceded
by a short historical review of the application of conformal metrics to
Cosmology.Comment: Historical review added. Accepted by J. Math. Phy
- …
