458 research outputs found
Null Models of Economic Networks: The Case of the World Trade Web
In all empirical-network studies, the observed properties of economic
networks are informative only if compared with a well-defined null model that
can quantitatively predict the behavior of such properties in constrained
graphs. However, predictions of the available null-model methods can be derived
analytically only under assumptions (e.g., sparseness of the network) that are
unrealistic for most economic networks like the World Trade Web (WTW). In this
paper we study the evolution of the WTW using a recently-proposed family of
null network models. The method allows to analytically obtain the expected
value of any network statistic across the ensemble of networks that preserve on
average some local properties, and are otherwise fully random. We compare
expected and observed properties of the WTW in the period 1950-2000, when
either the expected number of trade partners or total country trade is kept
fixed and equal to observed quantities. We show that, in the binary WTW,
node-degree sequences are sufficient to explain higher-order network properties
such as disassortativity and clustering-degree correlation, especially in the
last part of the sample. Conversely, in the weighted WTW, the observed sequence
of total country imports and exports are not sufficient to predict higher-order
patterns of the WTW. We discuss some important implications of these findings
for international-trade models.Comment: 39 pages, 46 figures, 2 table
One-loop f(R) gravity in de Sitter universe
Motivated by the dark energy issue, the one-loop quantization approach for a
family of relativistic cosmological theories is discussed in some detail.
Specifically, general gravity at the one-loop level in a de Sitter
universe is investigated, extending a similar program developed for the case of
pure Einstein gravity. Using generalized zeta regularization, the one-loop
effective action is explicitly obtained off-shell, what allows to study in
detail the possibility of (de)stabilization of the de Sitter background by
quantum effects. The one-loop effective action maybe useful also for the study
of constant curvature black hole nucleation rate and it provides the plausible
way of resolving the cosmological constant problem.Comment: 25 pages, Latex file. Discussion enlarged, new references added.
Version accepted in JCA
Nuclearite search with the MACRO detector at Gran Sasso
In this paper we present the results of a search for nuclearites in the
penetrating cosmic radiation using the scintillator and track-etch subdetectors
of the MACRO apparatus. The analyses cover the beta =v/c range at the detector
depth (3700 hg/cm^2) 10^-5 < beta < 1; for beta = 2 x 10^-3 the flux limit is
2.7 x 10^-16 cm^-2 s^-1 sr^-1 for an isotropic flux of nuclearites, and twice
this value for a flux of downgoing nuclearites.Comment: 16 pages, 4 Encapsulated Postscript figures, uses article.sty.
Submitted to The European Physical Journal
Atmospheric neutrino induced muons in the MACRO detector
A measurement of the flux of neutrino-induced muons using the MACRO detector
is presented. Different event topologies, corresponding to different neutrino
parent energies can be detected. The upward throughgoing muon sample is the
larger event sample. The observed upward-throughgoing muons are 26% fewer than
expected and the zenith angle distribution does not fit with the expected one.
Assuming neutrino oscillations, both measurements suggest maximum mixing and
Dm2 of a few times 10-3 eV2. The other samples are due to the internally
produced events and to upward-going stopping muons. These data show a regular
deficit of observed events in each angular bin, as expected assuming neutrino
oscillations with maximum mixing, in agreement with the analysis of the
upward-throughgoing muon sample.Comment: 7 pages 6 figures to appear in the proceedings of XVIII International
Conference on Neutrino Physics and Astrophysics (Neutrino'98), Takayama,
Japan 4-9 June, 199
The Observation of Up-going Charged Particles Produced by High Energy Muons in Underground Detectors
An experimental study of the production of up-going charged particles in
inelastic interactions of down-going underground muons is reported, using data
obtained from the MACRO detector at the Gran Sasso Laboratory. In a sample of
12.2 10^6 single muons, corresponding to a detector livetime of 1.55 y, 243
events are observed having an up-going particle associated with a down-going
muon. These events are analysed to determine the range and emission angle
distributions of the up-going particle, corrected for detection and
reconstruction efficiency. Measurements of the muon neutrino flux by
underground detectors are often based on the observation of through-going and
stopping muons produced in interactions in the rock below the
detector. Up-going particles produced by an undetected down-going muon are a
potential background source in these measurements. The implications of this
background for neutrino studies using MACRO are discussed.Comment: 18 pages, 9 figures. Accepted by Astrop. Physic
Measurement of the atmospheric neutrino-induced upgoing muon flux using MACRO
We present a measurement of the flux of neutrino-induced upgoing muons
(~100 GeV) using the MACRO detector. The ratio of the number of observed
to expected events integrated over all zenith angles is 0.74 +/- 0.036 (stat)
+/- 0.046(systematic) +/- 0.13 (theoretical). The observed zenith distribution
for -1.0 < cos(theta) < -0.1 does not fit well with the no oscillation
expectation, giving a maximum probability for chi^2 of 0.1%. The acceptance of
the detector has been extensively studied using downgoing muons, independent
analyses and Monte-Carlo simulations. The other systematic uncertainties cannot
be the source of the discrepancies between the data and expectations. We have
investigated whether the observed number of events and the shape of the zenith
distribution can be explained by a neutrino oscillation hypothesis. Fitting
either the flux or zenith distribution independently yields mixing parameters
of sin^2 (2theta)=1.0 and delta m^2 of a few times 10^-3 eV^2. However, the
observed zenith distribution does not fit well with any expectations giving a
maximum probability for chi^2 of 5% for the best oscillation hypothesis, and
the combined probability for the shape and number of events is 17%. We conclude
that these data favor a neutrino oscillation hypothesis, but with unexplained
structure in the zenith distribution not easily explained by either the
statistics or systematics of the experiment.Comment: 7 pages (two-column) with 4 figure
Observation of the Shadowing of Cosmic Rays by the Moon using a Deep Underground Detector
Using data collected by the MACRO experiment during the years 1989-1996, we
show evidence for the shadow of the moon in the underground cosmic ray flux
with a significance of 3.6 sigma. This detection of the shadowing effect is the
first by an underground detector. A maximum-likelihood analysis is used to
determine that the angular resolution of the apparatus is 0.9+/-0.3 degrees.
These results demonstrate MACRO's capabilities as a muon telescope by
confirming its absolute pointing ability and quantifying its angular
resolution.Comment: 14 pages, 8 figures Submitted to Phys. Rev.
The Effect of Cromolyn Sodium and Nedocromil Sodium Administered by A pressurized Aerosol with A spacer Device on Exercise-Induced Asthma in Children
To compare the effectiveness of cromolyn sodium (CS)
(10 mg) and nedocromil sodium (NS) (4 mg) administered
by a metered dose inhaler (MDI) with a spacer
device in preventing exercise-induced asthma (EIA), eight
asthmatic children with EIA were studied in a
randomized double-blind, cross-over, placebo-controlled
study, CS and NS provided significant, comparable protection
from EIA and both were better than placebo. We
conclude that CS and NS administered by a pressurized
aerosol with a spacer device provide equal protection
against EIA in children
Limits on dark matter WIMPs using upward-going muons in the MACRO detector
We perform an indirect search for Weakly Interacting Massive Particles
(WIMPs) using the MACRO detector to look for neutrino-induced upward-going
muons resulting from the annihilation of WIMPs trapped in the Sun and Earth.
The search is conducted in various angular cones centered on the Sun and Earth
to accommodate a range of WIMP masses. No significant excess over the
background from atmospheric neutrinos is seen and limits are placed on the
upward-going muon fluxes from Sun and Earth. These limits are used to constrain
neutralino particle parameters from supersymmetric theory, including those
suggested by recent results from DAMA/NaI.Comment: 14 pages, 7 figures, submitted to Phys. Rev.
World input-output network
Production systems, traditionally analyzed as almost independent national systems, are increasingly connected on a global scale. Only recently becoming available, the World Input-Output Database (WIOD) is one of the first efforts to construct the global multi-regional input-output (GMRIO) tables. By viewing the world input-output system as an interdependent network where the nodes are the individual industries in different economies and the edges are the monetary goods flows between industries, we analyze respectively the global, regional, and local network properties of the so-called world input-output network (WION) and document its evolution over time. At global level, we find that the industries are highly but asymmetrically connected, which implies that micro shocks can lead to macro fluctuations. At regional level, we find that the world production is still operated nationally or at most regionally as the communities detected are either individual economies or geographically well defined regions. Finally, at local level, for each industry we compare the network-based measures with the traditional methods of backward linkages. We find that the network-based measures such as PageRank centrality and community coreness measure can give valuable insights into identifying the key industries
- …
