15,128 research outputs found

    Anderson transition in systems with chiral symmetry

    Full text link
    Anderson localization is a universal quantum feature caused by destructive interference. On the other hand chiral symmetry is a key ingredient in different problems of theoretical physics: from nonperturbative QCD to highly doped semiconductors. We investigate the interplay of these two phenomena in the context of a three-dimensional disordered system. We show that chiral symmetry induces an Anderson transition (AT) in the region close to the band center. Typical properties at the AT such as multifractality and critical statistics are quantitatively affected by this additional symmetry. The origin of the AT has been traced back to the power-law decay of the eigenstates; this feature may also be relevant in systems without chiral symmetry.Comment: RevTex4, 4 two-column pages, 3 .eps figures, updated references, final version as published in Phys. Rev.

    Interplay Between Yu-Shiba-Rusinov States and Multiple Andreev Reflections

    Full text link
    Motivated by recent scanning tunneling microscopy experiments on single magnetic impurities on superconducting surfaces, we present here a comprehensive theoretical study of the interplay between Yu-Shiba-Rusinov bound states and (multiple) Andreev reflections. Our theory is based on a combination of an Anderson model with broken spin degeneracy and nonequilibrium Green's function techniques that allows us to describe the electronic transport through a magnetic impurity coupled to superconducting leads for arbitrary junction transparency. Using this combination we are able to elucidate the different tunneling processes that give a significant contribution to the subgap transport. In particular, we predict the occurrence of a large variety of Andreev reflections mediated by Yu-Shiba-Rusinov bound states that clearly differ from the standard Andreev processes in non-magnetic systems. Moreover, we provide concrete guidelines on how to experimentally identify the subgap features originating from these tunneling events. Overall, our work provides new insight into the role of the spin degree of freedom in Andreev transport physics.Comment: 15 pages, 10 figure

    Critical generalized inverse participation ratio distributions

    Full text link
    The system size dependence of the fluctuations in generalized inverse participation ratios (IPR's) Iα(q)I_{\alpha}(q) at criticality is investigated numerically. The variances of the IPR logarithms are found to be scale-invariant at the macroscopic limit. The finite size corrections to the variances decay algebraically with nontrivial exponents, which depend on the Hamiltonian symmetry and the dimensionality. The large-qq dependence of the asymptotic values of the variances behaves as q2q^2 according to theoretical estimates. These results ensure the self-averaging of the corresponding generalized dimensions.Comment: RevTex4, 5 pages, 4 .eps figures, to be published in Phys. Rev.

    Theoretical study of the charge transport through C60-based single-molecule junctions

    Full text link
    We present a theoretical study of the conductance and thermopower of single-molecule junctions based on C60 and C60-terminated molecules. We first analyze the transport properties of gold-C60-gold junctions and show that these junctions can be highly conductive (with conductances above 0.1G0, where G0 is the quantum of conductance). Moreover, we find that the thermopower in these junctions is negative due to the fact that the LUMO dominates the charge transport, and its magnitude can reach several tens of micro-V/K, depending on the contact geometry. On the other hand, we study the suitability of C60 as an anchoring group in single-molecule junctions. For this purpose, we analyze the transport through several dumbbell derivatives using C60 as anchors, and we compare the results with those obtained with thiol and amine groups. Our results show that the conductance of C60-terminated molecules is rather sensitive to the binding geometry. Moreover, the conductance of the molecules is typically reduced by the presence of the C60 anchors, which in turn makes the junctions more sensitive to the functionalization of the molecular core with appropriate side groups.Comment: 9 pages, 7 figure

    Non-ergodic phases in strongly disordered random regular graphs

    Full text link
    We combine numerical diagonalization with a semi-analytical calculations to prove the existence of the intermediate non-ergodic but delocalized phase in the Anderson model on disordered hierarchical lattices. We suggest a new generalized population dynamics that is able to detect the violation of ergodicity of the delocalized states within the Abou-Chakra, Anderson and Thouless recursive scheme. This result is supplemented by statistics of random wave functions extracted from exact diagonalization of the Anderson model on ensemble of disordered Random Regular Graphs (RRG) of N sites with the connectivity K=2. By extrapolation of the results of both approaches to N->infinity we obtain the fractal dimensions D_{1}(W) and D_{2}(W) as well as the population dynamic exponent D(W) with the accuracy sufficient to claim that they are non-trivial in the broad interval of disorder strength W_{E}<W<W_{c}. The thorough analysis of the exact diagonalization results for RRG with N>10^{5} reveals a singularity in D_{1,2}(W)-dependencies which provides a clear evidence for the first order transition between the two delocalized phases on RRG at W_{E}\approx 10.0. We discuss the implications of these results for quantum and classical non-integrable and many-body systems.Comment: 4 pages paper with 5 figures + Supplementary Material with 5 figure

    Stationary and moving breathers in a simplified model of curved alpha--helix proteins

    Get PDF
    The existence, stability and movability of breathers in a model for alpha-helix proteins is studied. This model basically consists a chain of dipole moments parallel to it. The existence of localized linear modes brings about that the system has a characteristic frequency, which depends on the curvature of the chain. Hard breathers are stable, while soft ones experiment subharmonic instabilities that preserve, however the localization. Moving breathers can travel across the bending point for small curvature and are reflected when it is increased. No trapping of breathers takes place.Comment: 19 pages, 11 figure

    The cluster of galaxies Abell 376

    Full text link
    We present a dynamical analysis of the galaxy cluster Abell 376 based on a set of 73 velocities, most of them measured at Pic du Midi and Haute-Provence observatories and completed with data from the literature. Data on individual galaxies are presented and the accuracy of the determined velocities is discussed as well as some properties of the cluster. We obtained an improved mean redshift value z=0.0478^{+0.005}_{-0.006} and velocity dispersion sigma=852^{+120}_{-76}km/s. Our analysis indicates that inside a radius of 900h_{70}^{-1}kpc (15 arcmin) the cluster is well relaxed without any remarkable feature and the X-ray emission traces fairly well the galaxy distribution. A possible substructure is seen at 20 arcmin from the centre towards the Southwest direction, but is not confirmed by the velocity field. This SW clump is, however, kinematically bound to the main structure of Abell 376. A dense condensation of galaxies is detected at 46 arcmin (projected distance 2.6h_{70}^{-1}Mpc) from the centre towards the Northwest and analysis of the apparent luminosity distribution of its galaxies suggests that this clump is part of the large scale structure of Abell 376. X-ray spectroscopic analysis of ASCA data resulted in a temperature kT = 4.3+/-0.4 keV and metal abundance Z = 0.32+/-0.08 Z_solar. The velocity dispersion corresponding to this temperature using the T_X-sigma scaling relation is in agreement with the measured galaxies velocities.Comment: 11 pages, 10 figures, accepted for publication in A&

    Process and machine system development for the forming of miniature/micro sheet metal products

    Get PDF
    This paper reports on the current development of the process for the forming of thin sheet-metal micro-parts (t < 50µm) and the corresponding machine system which is part of the research and technological development of an EU funded integrated project - MASMICRO ("Integration of Manufacturing Systems for the Mass-Manufacture of Miniature/Micro-Products" (/www.masmicro.net/). The process development started with qualification of the fundamentals related to the forming of thin sheet-metals in industrial environment, for which a testing machine and several sets of the testing tools were developed. The process was further optimised, followed by new tool designs. Based on the experience gained during the process development, a new forming press which is suitable for industrial, mass-customised production, has been designed
    corecore