15,128 research outputs found
Anderson transition in systems with chiral symmetry
Anderson localization is a universal quantum feature caused by destructive
interference. On the other hand chiral symmetry is a key ingredient in
different problems of theoretical physics: from nonperturbative QCD to highly
doped semiconductors. We investigate the interplay of these two phenomena in
the context of a three-dimensional disordered system. We show that chiral
symmetry induces an Anderson transition (AT) in the region close to the band
center. Typical properties at the AT such as multifractality and critical
statistics are quantitatively affected by this additional symmetry. The origin
of the AT has been traced back to the power-law decay of the eigenstates; this
feature may also be relevant in systems without chiral symmetry.Comment: RevTex4, 4 two-column pages, 3 .eps figures, updated references,
final version as published in Phys. Rev.
Interplay Between Yu-Shiba-Rusinov States and Multiple Andreev Reflections
Motivated by recent scanning tunneling microscopy experiments on single
magnetic impurities on superconducting surfaces, we present here a
comprehensive theoretical study of the interplay between Yu-Shiba-Rusinov bound
states and (multiple) Andreev reflections. Our theory is based on a combination
of an Anderson model with broken spin degeneracy and nonequilibrium Green's
function techniques that allows us to describe the electronic transport through
a magnetic impurity coupled to superconducting leads for arbitrary junction
transparency. Using this combination we are able to elucidate the different
tunneling processes that give a significant contribution to the subgap
transport. In particular, we predict the occurrence of a large variety of
Andreev reflections mediated by Yu-Shiba-Rusinov bound states that clearly
differ from the standard Andreev processes in non-magnetic systems. Moreover,
we provide concrete guidelines on how to experimentally identify the subgap
features originating from these tunneling events. Overall, our work provides
new insight into the role of the spin degree of freedom in Andreev transport
physics.Comment: 15 pages, 10 figure
Critical generalized inverse participation ratio distributions
The system size dependence of the fluctuations in generalized inverse
participation ratios (IPR's) at criticality is investigated
numerically. The variances of the IPR logarithms are found to be
scale-invariant at the macroscopic limit. The finite size corrections to the
variances decay algebraically with nontrivial exponents, which depend on the
Hamiltonian symmetry and the dimensionality. The large- dependence of the
asymptotic values of the variances behaves as according to theoretical
estimates. These results ensure the self-averaging of the corresponding
generalized dimensions.Comment: RevTex4, 5 pages, 4 .eps figures, to be published in Phys. Rev.
Theoretical study of the charge transport through C60-based single-molecule junctions
We present a theoretical study of the conductance and thermopower of
single-molecule junctions based on C60 and C60-terminated molecules. We first
analyze the transport properties of gold-C60-gold junctions and show that these
junctions can be highly conductive (with conductances above 0.1G0, where G0 is
the quantum of conductance). Moreover, we find that the thermopower in these
junctions is negative due to the fact that the LUMO dominates the charge
transport, and its magnitude can reach several tens of micro-V/K, depending on
the contact geometry. On the other hand, we study the suitability of C60 as an
anchoring group in single-molecule junctions. For this purpose, we analyze the
transport through several dumbbell derivatives using C60 as anchors, and we
compare the results with those obtained with thiol and amine groups. Our
results show that the conductance of C60-terminated molecules is rather
sensitive to the binding geometry. Moreover, the conductance of the molecules
is typically reduced by the presence of the C60 anchors, which in turn makes
the junctions more sensitive to the functionalization of the molecular core
with appropriate side groups.Comment: 9 pages, 7 figure
Non-ergodic phases in strongly disordered random regular graphs
We combine numerical diagonalization with a semi-analytical calculations to
prove the existence of the intermediate non-ergodic but delocalized phase in
the Anderson model on disordered hierarchical lattices. We suggest a new
generalized population dynamics that is able to detect the violation of
ergodicity of the delocalized states within the Abou-Chakra, Anderson and
Thouless recursive scheme. This result is supplemented by statistics of random
wave functions extracted from exact diagonalization of the Anderson model on
ensemble of disordered Random Regular Graphs (RRG) of N sites with the
connectivity K=2. By extrapolation of the results of both approaches to
N->infinity we obtain the fractal dimensions D_{1}(W) and D_{2}(W) as well as
the population dynamic exponent D(W) with the accuracy sufficient to claim that
they are non-trivial in the broad interval of disorder strength W_{E}<W<W_{c}.
The thorough analysis of the exact diagonalization results for RRG with
N>10^{5} reveals a singularity in D_{1,2}(W)-dependencies which provides a
clear evidence for the first order transition between the two delocalized
phases on RRG at W_{E}\approx 10.0. We discuss the implications of these
results for quantum and classical non-integrable and many-body systems.Comment: 4 pages paper with 5 figures + Supplementary Material with 5 figure
Stationary and moving breathers in a simplified model of curved alpha--helix proteins
The existence, stability and movability of breathers in a model for
alpha-helix proteins is studied. This model basically consists a chain of
dipole moments parallel to it. The existence of localized linear modes brings
about that the system has a characteristic frequency, which depends on the
curvature of the chain. Hard breathers are stable, while soft ones experiment
subharmonic instabilities that preserve, however the localization. Moving
breathers can travel across the bending point for small curvature and are
reflected when it is increased. No trapping of breathers takes place.Comment: 19 pages, 11 figure
The cluster of galaxies Abell 376
We present a dynamical analysis of the galaxy cluster Abell 376 based on a
set of 73 velocities, most of them measured at Pic du Midi and Haute-Provence
observatories and completed with data from the literature. Data on individual
galaxies are presented and the accuracy of the determined velocities is
discussed as well as some properties of the cluster. We obtained an improved
mean redshift value z=0.0478^{+0.005}_{-0.006} and velocity dispersion
sigma=852^{+120}_{-76}km/s. Our analysis indicates that inside a radius of
900h_{70}^{-1}kpc (15 arcmin) the cluster is well relaxed without any
remarkable feature and the X-ray emission traces fairly well the galaxy
distribution. A possible substructure is seen at 20 arcmin from the centre
towards the Southwest direction, but is not confirmed by the velocity field.
This SW clump is, however, kinematically bound to the main structure of Abell
376. A dense condensation of galaxies is detected at 46 arcmin (projected
distance 2.6h_{70}^{-1}Mpc) from the centre towards the Northwest and analysis
of the apparent luminosity distribution of its galaxies suggests that this
clump is part of the large scale structure of Abell 376. X-ray spectroscopic
analysis of ASCA data resulted in a temperature kT = 4.3+/-0.4 keV and metal
abundance Z = 0.32+/-0.08 Z_solar. The velocity dispersion corresponding to
this temperature using the T_X-sigma scaling relation is in agreement with the
measured galaxies velocities.Comment: 11 pages, 10 figures, accepted for publication in A&
Process and machine system development for the forming of miniature/micro sheet metal products
This paper reports on the current development of the process for the forming of thin sheet-metal micro-parts (t < 50µm) and the corresponding machine system which is part of the research and technological development of an EU funded integrated project - MASMICRO ("Integration of Manufacturing Systems for the Mass-Manufacture of Miniature/Micro-Products" (/www.masmicro.net/). The process development started with qualification of the fundamentals related to the forming of thin sheet-metals in industrial environment, for which a testing machine and several sets of the testing tools were developed. The process was further optimised, followed by new tool designs. Based on the experience gained during the process development, a new forming press which is suitable for industrial, mass-customised production, has been designed
- …
