75 research outputs found

    Stochastic Stability: a Review and Some Perspectives

    Full text link
    A review of the stochastic stability property for the Gaussian spin glass models is presented and some perspectives discussed.Comment: 12 pages, typos corrected, references added. To appear in Journal of Statistical Physics, Special Issue for the 100th Statistical Mechanics Meetin

    Optimization Strategies in Complex Systems

    Full text link
    We consider a class of combinatorial optimization problems that emerge in a variety of domains among which: condensed matter physics, theory of financial risks, error correcting codes in information transmissions, molecular and protein conformation, image restoration. We show the performances of two algorithms, the``greedy'' (quick decrease along the gradient) and the``reluctant'' (slow decrease close to the level curves) as well as those of a``stochastic convex interpolation''of the two. Concepts like the average relaxation time and the wideness of the attraction basin are analyzed and their system size dependence illustrated.Comment: 8 pages, 3 figure

    Correlation Inequalities for Quantum Spin Systems with Quenched Centered Disorder

    Full text link
    It is shown that random quantum spin systems with centered disorder satisfy correlation inequalities previously proved (arXiv:cond-mat/0612371) in the classical case. Consequences include monotone approach of pressure and ground state energy to the thermodynamic limit. Signs and bounds on the surface pressures for different boundary conditions are also derived for finite range potentials.Comment: 4 page

    A mean-field monomer-dimer model with attractive interaction. The exact solution

    Full text link
    A mean-field monomer-dimer model which includes an attractive interaction among both monomers and dimers is introduced and its exact solution rigorously derived. The Heilmann-Lieb method for the pure hard-core interacting case is used to compute upper and lower bounds for the pressure. The bounds are shown to coincide in the thermodynamic limit for a suitable choice of the monomer density m. The consistency equation characterising m is studied in the phase space (h, J), where h tunes the monomer potential and J the attractive potential. The critical point and exponents are computed and show that the model is in the mean-field ferromagnetic universality class.Comment: 32 pages, 6 figure

    Short-range spin glasses and Random Overlap Structures

    Full text link
    Properties of Random Overlap Structures (ROSt)'s constructed from the Edwards-Anderson (EA) Spin Glass model on Zd\Z^d with periodic boundary conditions are studied. ROSt's are N×N\N\times\N random matrices whose entries are the overlaps of spin configurations sampled from the Gibbs measure. Since the ROSt construction is the same for mean-field models (like the Sherrington-Kirkpatrick model) as for short-range ones (like the EA model), the setup is a good common ground to study the effect of dimensionality on the properties of the Gibbs measure. In this spirit, it is shown, using translation invariance, that the ROSt of the EA model possesses a local stability that is stronger than stochastic stability, a property known to hold at almost all temperatures in many spin glass models with Gaussian couplings. This fact is used to prove stochastic stability for the EA spin glass at all temperatures and for a wide range of coupling distributions. On the way, a theorem of Newman and Stein about the pure state decomposition of the EA model is recovered and extended.Comment: 27 page

    Thermodynamic Limit for Finite Dimensional Classical and Quantum Disordered Systems

    Full text link
    We provide a very simple proof for the existence of the thermodynamic limit for the quenched specific pressure for classical and quantum disordered systems on a dd-dimensional lattice, including spin glasses. We develop a method which relies simply on Jensen's inequality and which works for any disorder distribution with the only condition (stability) that the quenched specific pressure is bounded.Comment: 14 pages. Final version, accepted for publication on Rev. Math. Phy

    Replica equivalence in the Edwards-Anderson model

    Full text link
    After introducing and discussing the "link-overlap" between spin configurations we show that the Edwards-Anderson model has a "replica-equivalent" quenched equilibrium state, a property introduced by Parisi in the description of the mean-field spin-glass phase which generalizes ultrametricity. Our argument is based on the control of fluctuations through the property of stochastic stability and works for all the finite-dimensional spin-glass models.Comment: 12 pages, few remarks added. To appear in Journal of Physics A: Mathematical and Genera

    An Extended Variational Principle for the SK Spin-Glass Model

    Full text link
    The recent proof by F. Guerra that the Parisi ansatz provides a lower bound on the free energy of the SK spin-glass model could have been taken as offering some support to the validity of the purported solution. In this work we present a broader variational principle, in which the lower bound, as well as the actual value, are obtained through an optimization procedure for which ultrametic/hierarchal structures form only a subset of the variational class. The validity of Parisi's ansatz for the SK model is still in question. The new variational principle may be of help in critical review of the issue.Comment: 4 pages, Revtex

    Thermodynamics and Universality for Mean Field Quantum Spin Glasses

    Full text link
    We study aspects of the thermodynamics of quantum versions of spin glasses. By means of the Lie-Trotter formula for exponential sums of operators, we adapt methods used to analyze classical spin glass models to answer analogous questions about quantum models.Comment: 17 page

    Real spin glasses relax slowly in the shade of hierarchical trees

    Get PDF
    The Parisi solution of the mean-field spin glass has been widely accepted and celebrated. Its marginal stability in 3d and its complexity however raised the question of its relevance to real spin glasses. This paper gives a short overview of the important experimental results which could be understood within the mean-field solution. The existence of a true phase transition and the particular behaviour of the susceptibility below the freezing temperature, predicted by the theory, are clearly confirmed by the experimental results. The behaviour of the complex order parameter and of the Fluctuation Dissipation ratio are in good agreement with results of spontaneous noise measurements. The very particular ultrametric symmetry, the key feature of the theory, provided us with a simple description of the rejuvenation and memory effects observed in experiment. Finally, going a step beyond mean-field, the paper shortly discusses new analyses in terms of correlated domains characterized by their length scales, as well as new experiments on superspin glasses which compare well with recent theoretical simulations.Comment: To appear in the proceedings of "Wandering with Curiosity in Complex Landscapes", a scientific conference in honour of Giorgio Parisi for his 60th birthday, Roma, September 8-10 2008 (submitted for the special issue of the Journal of Statistical Physics, 2009
    • …
    corecore