69 research outputs found

    Virtual pathway explorer (viPEr) and pathway enrichment analysis tool (PEANuT): creating and analyzing focus networks to identify cross-talk between molecules and pathways

    Full text link
    BACKGROUND: Interpreting large-scale studies from microarrays or next-generation sequencing for further experimental testing remains one of the major challenges in quantitative biology. Combining expression with physical or genetic interaction data has already been successfully applied to enhance knowledge from all types of high-throughput studies. Yet, toolboxes for navigating and understanding even small gene or protein networks are poorly developed. RESULTS: We introduce two Cytoscape plug-ins, which support the generation and interpretation of experiment-based interaction networks. The virtual pathway explorer viPEr creates so-called focus networks by joining a list of experimentally determined genes with the interactome of a specific organism. viPEr calculates all paths between two or more user-selected nodes, or explores the neighborhood of a single selected node. Numerical values from expression studies assigned to the nodes serve to score identified paths. The pathway enrichment analysis tool PEANuT annotates networks with pathway information from various sources and calculates enriched pathways between a focus and a background network. Using time series expression data of atorvastatin treated primary hepatocytes from six patients, we demonstrate the handling and applicability of viPEr and PEANuT. Based on our investigations using viPEr and PEANuT, we suggest a role of the FoxA1/A2/A3 transcriptional network in the cellular response to atorvastatin treatment. Moreover, we find an enrichment of metabolic and cancer pathways in the Fox transcriptional network and demonstrate a patient-specific reaction to the drug. CONCLUSIONS: The Cytoscape plug-in viPEr integrates –omics data with interactome data. It supports the interpretation and navigation of large-scale datasets by creating focus networks, facilitating mechanistic predictions from –omics studies. PEANuT provides an up-front method to identify underlying biological principles by calculating enriched pathways in focus networks. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-2017-z) contains supplementary material, which is available to authorized users

    Anti-cancer potential of MAPK pathway inhibition in paragangliomas-effect of different statins on mouse pheochromocytoma cells.

    Get PDF
    To date, malignant pheochromocytomas and paragangliomas (PHEOs/PGLs) cannot be effectively cured and thus novel treatment strategies are urgently needed. Lovastatin has been shown to effectively induce apoptosis in mouse PHEO cells (MPC) and the more aggressive mouse tumor tissue-derived cells (MTT), which was accompanied by decreased phosphorylation of mitogen-activated kinase (MAPK) pathway players. The MAPK pathway plays a role in numerous aggressive tumors and has been associated with a subgroup of PHEOs/PGLs, including K-RAS-, RET-, and NF1-mutated tumors. Our aim was to establish whether MAPK signaling may also play a role in aggressive, succinate dehydrogenase (SDH) B mutation-derived PHEOs/PGLs. Expression profiling and western blot analysis indicated that specific aspects of MAPK-signaling are active in SDHB PHEOs/PGLs, suggesting that inhibition by statin treatment could be beneficial. Moreover, we aimed to assess whether the anti-proliferative effect of lovastatin on MPC and MTT differed from that exerted by fluvastatin, simvastatin, atorvastatin, pravastatin, or rosuvastatin. Simvastatin and fluvastatin decreased cell proliferation most effectively and the more aggressive MTT cells appeared more sensitive in this respect. Inhibition of MAPK1 and 3 phosphorylation following treatment with fluvastatin, simvastatin, and lovastatin was confirmed by western blot. Increased levels of CASP-3 and PARP cleavage confirmed induction of apoptosis following the treatment. At a concentration low enough not to affect cell proliferation, spontaneous migration of MPC and MTT was significantly inhibited within 24 hours of treatment. In conclusion, lipophilic statins may present a promising therapeutic option for treatment of aggressive human paragangliomas by inducing apoptosis and inhibiting tumor spread

    Determinants of sensitivity to lovastatin-induced apoptosis in multiple myeloma

    Full text link
    Statins, commonly used to treat hypercholesterolemia, have been shown to trigger tumor-specific apoptosis in certain cancers, including multiple myeloma (MM), a plasma cell malignancy with poor prognosis. In this article, we show that of a panel of 17 genetically distinct MM cell lines, half were sensitive to statin-induced apoptosis and, despite pharmacodynamic evidence of drug uptake and activity, the remainder were insensitive. Sensitive cells were rescued from lovastatin-induced apoptosis by mevalonate, geranylgeranyl PPi, and partially by farnesyl PPi, highlighting the importance of isoprenylation. Expression profiling revealed that Rho GTPase mRNAs were differentially expressed upon lovastatin exposure in sensitive cells, yet ectopic expression of constitutively active Rho or Ras proteins was insufficient to alter sensitivity to lovastatin-induced apoptosis. This suggests that sensitivity involves more than one isoprenylated protein and that statins trigger apoptosis by blocking many signaling cascades, directly or indirectly deregulated by the oncogenic lesions of the tumor cell. Indeed, clustering on the basis of genetic abnormalities was shown to be significantly associated with sensitivity (P = 0.003). These results suggest that statins may be a useful molecular targeted therapy in the treatment of a subset of MM

    Bismuth on copper (110): analysis of the c(2x2) and p(4x1) structures by surface x-ray diffraction

    No full text
    Surface X-ray diffraction has been used to analyze the atomic structures of the Cu(110)-c(2 × 2)Bi and Cu(110)-p(4 × 1)Bi reconstructions with submonolayer coverages. A quasi-hexagonal c(2 × 2) adlayer structure is formed when half a monolayer of bismuth is deposited; the coverage corresponds to 1.08 × 10−15 atoms cm−2. There is one Bi atom per c(2 × 2) surface unit cell, and the nearest-neighbor distance on the planar overlayer was found to be 4.43 Å. In the case of the p(4 × 1) reconstruction formed at a coverage of 0.75 monolayers, both the in-plane and out-of-plane data are in excellent agreement with a model in which every fourth Cu row in the [001] direction of the topmost layer is replaced by Bi atoms to form a substitutional surface alloy
    corecore