485 research outputs found

    Benthic response to ammonium pulses in a tropical lagoon : implications for coastal environmental processes

    Get PDF
    In New Caledonia, the benthic communities living in the coral reef lagoon around Noumea city are subjected to regular shifts from oligotrophic conditions typical of lagoon waters to nutrient enrichment due to waste water inputs. The influence of ammonium pulses on microphytobenthos production was experimentally tested under varying light intensities in the vicinity of Noumea. Benthic oxygen, ammonium and silicon fluxes at the sediment-water interface were measured in situ using benthic enclosures. Three ammonium concentrations were tested. Gross primary production was doubled with a 13.8 mu mol 1(-1) ammonium concentration increase. Fitted PI curves showed that maximum production (F-max) was linearly related to ammonium concentration, but not the optimal irradiance (I-k). Silicon fluxes were characterized by dissolution in the absence of light, a process that declined with increasing illumination. These results were attributed to microphytobenthos activity, mainly diatoms that are nutrient-limited and strongly reactive to ammonium inputs. Production may result from a multiplication of cells, but migration up to the water sediment interface may also be involved. Oxygen consumption was also significantly influenced by ammonium concentration as a positive linear relationship with added ammonium concentration was established. Even during short-term experiments, ammonium enrichment stimulated photoautotrophic production, increasing the energy available to heterotrophs. Furthermore, microbenthic activities as well as nitrate production were increased by ammoniaoxidizing bacteria able to grow chemolithotrophically at the expense of oxygen. Therefore, in the study area, pulses of urban waste waters resulted in a decrease of plant-related autotrophy in benthic communities. (c) 2004 Elsevier B.V. All rights reserved

    Verification of Magnitude and Phase Responses in Fixed-Point Digital Filters

    Full text link
    In the digital signal processing (DSP) area, one of the most important tasks is digital filter design. Currently, this procedure is performed with the aid of computational tools, which generally assume filter coefficients represented with floating-point arithmetic. Nonetheless, during the implementation phase, which is often done in digital signal processors or field programmable gate arrays, the representation of the obtained coefficients can be carried out through integer or fixed-point arithmetic, which often results in unexpected behavior or even unstable filters. The present work addresses this issue and proposes a verification methodology based on the digital-system verifier (DSVerifier), with the goal of checking fixed-point digital filters w.r.t. implementation aspects. In particular, DSVerifier checks whether the number of bits used in coefficient representation will result in a filter with the same features specified during the design phase. Experimental results show that errors regarding frequency response and overflow are likely to be identified with the proposed methodology, which thus improves overall system's reliability

    Responses of two scleractinian corals to cobalt pollution and ocean acidification

    Get PDF
    The effects of ocean acidification alone or in combination with warming on coral metabolism have been extensively investigated, whereas none of these studies consider that most coral reefs near shore are already impacted by other natural anthropogenic inputs such as metal pollution. It is likely that projected ocean acidification levels will aggravate coral reef health. We first investigated how ocean acidification interacts with one near shore locally abundant metal on the physiology of two major reef-building corals: Stylophora pistillata and Acropora muricata. Two pH levels (pH(T) 8.02; pCO(2) 366 mu atm and pH(T) 7.75; pCO(2) 1140 mu atm) and two cobalt concentrations (natural, 0.03 mu g L-1 and polluted, 0.2 mu g L-1) were tested during five weeks in aquaria. We found that, for both species, cobalt input decreased significantly their growth rates by 28% while it stimulated their photosystem II, with higher values of rETR(max) (relative Electron Transport Rate). Elevated pCO(2) levels acted differently on the coral rETR(max) values and did not affect their growth rates. No consistent interaction was found between pCO(2) levels and cobalt concentrations. We also measured in situ the effect of higher cobalt concentrations (1.06 +/- 0.16 mu g L-1) on A. muricata using benthic chamber experiments. At this elevated concentration, cobalt decreased simultaneously coral growth and photosynthetic rates, indicating that the toxic threshold for this pollutant has been reached for both host cells and zooxanthellae. Our results from both aquaria and in situ experiments, suggest that these coral species are not particularly sensitive to high pCO(2) conditions but they are to ecologically relevant cobalt concentrations. Our study reveals that some reefs may be yet subjected to deleterious pollution levels, and even if no interaction between pCO(2) levels and cobalt concentration has been found, it is likely that coral metabolism will be weakened if they are subjected to additional threats such as temperature increase, other heavy metals, and eutrophication

    Cache Based Power Analysis Attacks on AES

    Get PDF
    International audienceThis paper describes possible attacks against software implementations of AES running on processors with cache mechanisms, particularly in the case of smart cards. These attacks are based on sidechannel information gained by observing cache hits and misses in the current drawn by the smart card. Two dierent attacks are described. The first is a combination of ideas proposed in [2] and [11] to produce an attack that only requires the manipulation of the plain text and the observation of the current. The second is an attack based on specific implementations of the xtime function [10]. These attacks are shown to also work against algorithms using Boolean data masking techniques as a DPA countermeasure

    Financial sustainability and profitability of supercritical CO2 pasteurization of liquid products: A case study

    Get PDF
    This work presents an analysis of a supercritical CO2 (SC-CO2) pasteurization process, focusing on the financial and economic parameters that make the process sustainable at an industrial level. A small company processing 5,000,000 bottles of apple juice per year has been chosen as a case study. Investment and operating costs have been estimated based on data collected from the market and the relevant economic literature. The financial sustainability assessment was performed through the Discounted Cash Flow methodology, proving that SC-CO2 pasteurization is profitable on a 10-year horizon. The Net Present Value is strictly positive and the Internal Rate of Return higher than the cost of funding. The sensitivity analysis shows the robustness of this study to possible changes in the model parameters. Overall, this work demonstrates SC-CO2 pasteurization to be profitable and, considering the current growth of the high-nutritional value fruit juice market, it suggests positive financial returns for both incumbents and new entrants

    IoT protocols, architectures, and applications

    Get PDF
    The proliferation of embedded systems, wireless technologies, and Internet protocols have made it possible for the Internet-of-things (IoT) to bridge the gap between the physical and the virtual world and thereby enabling monitoring and control of the physical environment by data processing systems. IoT refers to the inter-networking of everyday objects that are equipped with sensing, computing, and communication capabilities. These networks can collaborate to autonomously solve a variety of tasks. Due to the very diverse set of applications and application requirements, there is no single communication technology that is able to provide cost-effective and close to optimal performance in all scenarios. In this chapter, we report on research carried out on a selected number of IoT topics: low-power wide-area networks, in particular, LoRa and narrow-band IoT (NB-IoT); IP version 6 over IEEE 802.15.4 time-slotted channel hopping (6TiSCH); vehicular antenna design, integration, and processing; security aspects for vehicular networks; energy efficiency and harvesting for IoT systems; and software-defined networking/network functions virtualization for (SDN/NFV) IoT

    Scalable Aerobic Oxidation of Alcohols Using Catalytic DDQ/HNO3

    Get PDF
    A selective, practical, and scalable aerobic oxidation of alcohols is described that uses catalytic amounts of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and HNO3, with molecular oxygen serving as the terminal oxidant. The method was successfully applied to the oxidation of a wide range of benzylic, propargylic, and allylic alcohols, including two natural products, namely, carveol and podophyllotoxin. The conditions are also applicable to the selective oxidative deprotection of p-methoxybenzyl ethers

    Making Password Authenticated Key Exchange Suitable For Resource-Constrained Industrial Control Devices

    Get PDF
    Connectivity becomes increasingly important also for small embedded systems such as typically found in industrial control installations. More and more use-cases require secure remote user access increasingly incorporating handheld based human machine interfaces, using wireless links such as Bluetooth. Correspondingly secure operator authentication becomes of utmost importance. Unfortunately, often passwords with all their well-known pitfalls remain the only practical mechanism. We present an assessment of the security requirements for the industrial setting, illustrating that offline attacks on passwords-based authentication protocols should be considered a significant threat. Correspondingly use of a Password Authenticated Key Exchange protocol becomes desirable. We review the signif-icant challenges faced for implementations on resource-constrained devices. We explore the design space and shown how we succeeded in tailoring a partic-ular variant of the Password Authenticated Connection Establishment (PACE) protocol, such that acceptable user interface responsiveness was reached even for the constrained setting of an ARM Cortex-M0+ based Bluetooth low-energy transceiver running from a power budget of 1.5 mW without notable energy buffers for covering power peak transients
    corecore