64 research outputs found

    The extraordinary Hall effect in coherent epitaxial tau (Mn,Ni)Al thin films on GaAs

    Get PDF
    Ultrathin coherent epitaxial films of ferromagnetic tau(Mn,Ni)0.60Al0.40 have been grown by molecular beam epitaxy on GaAs substrates. X-ray scattering and cross-sectional transmission electron microscopy measurements confirm that the c axis of the tetragonal tau unit cell is aligned normal to the (001) GaAs substrate. Measurements of the extraordinary Hall effect (EHE) show that the films are perpendicularly magnetized, exhibiting EHE resistivities saturating in the range of 3.3-7.1 muOMEGA-cm at room temperature. These values of EHE resistivity correspond to signals as large as +7 and -7 mV for the two magnetic states of the film with a measurement current of 1 mA. Switching between the two magnetic states is found to occur at distinct field values that depend on the previously applied maximum field. These observations suggest that the films are magnetically uniform. As such, tau(Mn,Ni)Al films may be an excellent medium for high-density storage of binary information

    Non-Volatile Memory Characteristics of Submicrometre Hall Structures Fabricated in Epitaxial Ferromagnetic MnAl Films on GaAs

    Get PDF
    Hall-effect structures with submicrometre linewidths (<0.3pm) have been fabricated in ferromagnetic thin films of Mn[sub 0.60]Al[sub 0.40] which are epitaxially grown on a GaAs substrate. The MnAl thin films exhibit a perpendicular remanent magnetisation and an extraordinary Hall effect with square hysteretic behaviour. The presence of two distinct stable readout states demonstrates the potential of using ultrasmall ferromagnetic volumes for electrically addressable, nonvolatile storage of digital information

    Epitaxial-tau(Mn,Ni)Al/(Al,Ga)As heterostructures: Magnetic and magneto-optic properties

    Get PDF
    Ferromagnetic Perpendicularly magnetized epitaxial thin films of tau (Mn,Ni)AI have been successfully grown on AlAs/GaAs heterostructures by molecular beam epitaxy. We have investigated the polar Kerr rotation and magnetization of tau MnAl and (Mn,Ni) Al as a function of Mn and Ni concentration. The largest polar Kerr rotation and remnant magnetization were obtained for Mn0.5Al0.5 thin films with values of 0.16-degrees and 224 emu/cm3, respectively. We observed that the Kerr rotation and magnetization remained constant with Ni additions up to about 12 at. % and subsequently decreased with further Ni additions. We discuss these results and one possible method of enhancing the Kerr rotation

    The impact of gravidity, symptomatology and timing of infection on placental malaria.

    Get PDF
    BACKGROUND: Placental malaria is associated with increased risk of adverse perinatal outcomes. While primigravidity has been reported as a risk factor for placental malaria, little is known regarding the relationship between gravidity, symptomatology and timing of Plasmodium falciparum infection and the development of placental malaria. METHODS: The aim of this study was to investigate the relationship between the development of placental malaria and gravidity, timing of infection, and presence of symptoms. This is a secondary analysis of data from a double-blind randomized control trial of intermittent preventive therapy during pregnancy in Uganda. Women were enrolled from 12 to 20 weeks gestation and followed through delivery. Exposure to malaria parasites was defined as symptomatic (fever with positive blood smear) or asymptomatic (based on molecular detection of parasitaemia done routinely every 4 weeks). The primary outcome was placental malaria diagnosed by histopathology, placental blood smear, and/or placental blood loop-mediated isothermal amplification. Multivariate analyses were performed using logistic regression models. Subgroup analysis was performed based on the presence of symptomatic malaria, gravidity, and timing of infection. RESULTS: Of the 228 patients with documented maternal infection with malaria parasites during pregnancy, 101 (44.3%) had placental malaria. Primigravidity was strongly associated with placental malaria (aOR 8.90, 95% CI 4.34-18.2, p < 0.001), and each episode of malaria was associated with over a twofold increase in placental malaria (aOR 2.35, 95% CI 1.69-3.26, p < 0.001). Among multigravid women, the odds of placental malaria increased by 14% with each advancing week of gestation at first documented infection (aOR 1.14, 95% CI 1.02-1.27, p = 0.02). When stratified by the presence of symptoms, primigravidity was only associated with placental malaria in asymptomatic women, who had a 12-fold increase in the odds of placental malaria (aOR 12.19, 95% CI 5.23-28.43, p < 0.001). CONCLUSIONS: Total number of P. falciparum infections in pregnancy is a significant predictor of placental malaria. The importance of timing of infection on the development of placental malaria varies based on gravidity. In primigravidas, earlier asymptomatic infections were more frequently identified in those with placental malaria, whereas in multigravidas, parasitaemias detected later in gestation were associated with placental malaria. Earlier initiation of an effective intermittent preventive therapy may help to prevent placental malaria and improve birth outcomes, particularly in primigravid women

    Direct observation of topoisomerase IA gate dynamics

    Get PDF
    Type IA topoisomerases cleave single-stranded DNA and relieve negative supercoils in discrete steps corresponding to the passage of the intact DNA strand through the cleaved strand. Although type IA topoisomerases are assumed to accomplish this strand passage via a protein-mediated DNA gate, opening of this gate has never been observed. We developed a single-molecule assay to directly measure gate opening of the Escherichia coli type IA topoisomerases I and III. We found that after cleavage of single-stranded DNA, the protein gate opens by as much as 6.6 nm and can close against forces in excess of 16 pN. Key differences in the cleavage, ligation, and gate dynamics of these two enzymes provide insights into their different cellular functions. The single-molecule results are broadly consistent with conformational changes obtained from molecular dynamics simulations. These results allowed us to develop a mechanistic model of interactions between type IA topoisomerases and single-stranded DNA

    Studying protein–protein affinity and immobilized ligand–protein affinity interactions using MS-based methods

    Get PDF
    This review discusses the most important current methods employing mass spectrometry (MS) analysis for the study of protein affinity interactions. The methods are discussed in depth with particular reference to MS-based approaches for analyzing protein–protein and protein–immobilized ligand interactions, analyzed either directly or indirectly. First, we introduce MS methods for the study of intact protein complexes in the gas phase. Next, pull-down methods for affinity-based analysis of protein–protein and protein–immobilized ligand interactions are discussed. Presently, this field of research is often called interactomics or interaction proteomics. A slightly different approach that will be discussed, chemical proteomics, allows one to analyze selectivity profiles of ligands for multiple drug targets and off-targets. Additionally, of particular interest is the use of surface plasmon resonance technologies coupled with MS for the study of protein interactions. The review addresses the principle of each of the methods with a focus on recent developments and the applicability to lead compound generation in drug discovery as well as the elucidation of protein interactions involved in cellular processes. The review focuses on the analysis of bioaffinity interactions of proteins with other proteins and with ligands, where the proteins are considered as the bioactives analyzed by MS

    The Effect of Hydrogen Ion Bombardment on Fluorocarbon Polymers

    Full text link
    AbstractPolytetrafluoroethylene(PTFE), Polyvinylidene fluoride(PVFD), and Polymethylmethacrylate(PMMA) thin films have been bombarded with a H2 ion beam. The ion exposure time varied from 3 to 12 minutes corresponding to an ion dose of 1017H+/cm2 to 1018H+/cm2. ESCA spectra showed that the fluorine intensity from the fluorocarbon polymers decreased after H2 ion bombardment. Also the CF2 type bond groups observed in the fluorocarbon polymers decreased leaving only the hydrocarbon type bond groups (CH2) after H2 ion bombardment. We speculate that the hydrogen atoms abstract fluorine from the polymer which decreases the fluorine concentration. ESCA has been used to determine the effect of chemical vs. inert (H2 vs. He) ion bombardment on fluorocarbon polymers as a function of exposure time. The implication of these results to explain the differences between RIE and RIBE deposited polymers will be discussed.</jats:p
    corecore