3,233 research outputs found
Differential elastic scattering cross sections for 54.9eV positrons incident on helium
Absolute differential elastic scattering cross sections measured with the 3-m, high resolution, time-of-flight spectrometer are presented for 54.9eV positrons incident on He. Five point moving average differential cross sections are plotted against average scattering angles which range from 14 to 36 deg. Also the averages of five differential cross sections which have adjacent values of scattering angle are plotted versus the corresponding averages of the scattering angles. The curve fitted to these data is shaped like the theoretical curve but has its minimum and its maximum at scattering angles that are about 4 deg higher and 15 deg lower respectively than predicted by theory
Total cross sections for positrons scattered elastically from helium based on new measurements of total ionization cross sections
An improved technique is presented for employing the 2.3m spectrometer to measure total ionization cross sections, Q sub ion, for positrons incident on He. The new ionization cross section agree with the values reported earlier. Estimates are also presented of total elastic scattering cross section, Q sub el, obtained by subtracting from total scattering cross sections, Q sub tot, reported in the literature, the Q sub ion and Q sub Ps (total positronium formation cross sections) and total excitation cross sections, Q sub ex, published by another researcher. The Q sub ion and Q sub el measured with the 3m high resolution time-of-flight spectrometer for 54.9eV positrons are in accord with the results from the 2.3m spectrometer. The ionization cross sections are in fair agreement with theory tending for the most part to be higher, especially at 76.3 and 88.5eV. The elastic cross section agree quite well with theory to the vicinity of 50eV, but at 60eV and above the experimental elastic cross sections climb to and remain at about 0.30 pi a sub o sq while the theoretical values steadily decrease
Kepler Mission Stellar and Instrument Noise Properties Revisited
An earlier study of the Kepler Mission noise properties on time scales of
primary relevance to detection of exoplanet transits found that higher than
expected noise followed to a large extent from the stars, rather than
instrument or data analysis performance. The earlier study over the first six
quarters of Kepler data is extended to the full four years ultimately
comprising the mission. Efforts to improve the pipeline data analysis have been
successful in reducing noise levels modestly as evidenced by smaller values
derived from the current data products. The new analyses of noise properties on
transit time scales show significant changes in the component attributed to
instrument and data analysis, with essentially no change in the inferred
stellar noise. We also extend the analyses to time scales of several days,
instead of several hours to better sample stellar noise that follows from
magnetic activity. On the longer time scale there is a shift in stellar noise
for solar-type stars to smaller values in comparison to solar values.Comment: 10 pages, 8 figures, accepted by A
A thorough analysis of the short- and mid-term activity-related variations in the solar acoustic frequencies
The frequencies of the solar acoustic oscillations vary over the activity
cycle. The variations in other activity proxies are found to be well correlated
with the variations in the acoustic frequencies. However, each proxy has a
slightly different time behaviour. Our goal is to characterize the differences
between the time behaviour of the frequency shifts and of two other activity
proxies, namely, the area covered by sunspots and the 10.7cm flux. We define a
new observable that is particularly sensitive to the short-term frequency
variations. We then compare the observable when computed from model frequency
shifts and from observed frequency shifts obtained with the Global Oscillation
Network Group (GONG) for cycle 23. Our analysis shows that on the shortest
time-scales the variations in the frequency shifts seen in the GONG
observations are strongly correlated with the variations in the area covered by
sunspots. However, a significant loss of correlation is still found. We verify
that the times when the frequency shifts and the sunspot area do not vary in a
similar way tend to coincide with the times of the maxima of the quasi-biennial
variations seen in the solar seismic data. A similar analysis of the relation
between the 10.7cm flux and the frequency shifts reveals that the short-time
variations in the frequency shifts follow even more closely those of the 10.7cm
flux than those of the sunspot area. However, a loss of correlation between
frequency shifts and 10.7cm flux variations is still found around the same
times.Comment: 7 pages, 6 figures, accepted for publication in MNRA
Why should we correct reported pulsation frequencies for stellar line-of-sight Doppler velocity shifts?
In the age of Kepler and Corot, extended observations have provided estimates
of stellar pulsation frequencies that have achieved new levels of precision,
regularly exceeding fractional levels of a few parts in . These high
levels of precision now in principle exceed the point where one can ignore the
Doppler shift of pulsation frequencies caused by the motion of a star relative
to the observer. We present a correction for these Doppler shifts and use
previously published pulsation frequencies to demonstrate the significance of
the effect. We suggest that reported pulsation frequencies should be routinely
corrected for stellar line-of-sight velocity Doppler shifts, or if a
line-of-sight velocity estimate is not available, the frame of reference in
which the frequencies are reported should be clearly stated.Comment: 5 pages, 1 figure, accepted for publication in MNRAS Letter
Earth Occultation Imaging of the Low Energy Gamma-Ray Sky with GBM
The Earth Occultation Technique (EOT) has been applied to Fermi's Gamma-ray
Burst Monitor (GBM) to perform all-sky monitoring for a predetermined catalog
of hard X-ray/soft gamma-ray sources. In order to search for sources not in the
catalog, thus completing the catalog and reducing a source of systematic error
in EOT, an imaging method has been developed -- Imaging with a Differential
filter using the Earth Occultation Method (IDEOM). IDEOM is a tomographic
imaging method that takes advantage of the orbital precession of the Fermi
satellite. Using IDEOM, all-sky reconstructions have been generated for ~sim 4
years of GBM data in the 12-50 keV, 50-100 keV and 100-300 keV energy bands in
search of sources otherwise unmodeled by the GBM occultation analysis. IDEOM
analysis resulted in the detection of 57 sources in the 12-50 keV energy band,
23 sources in the 50-100 keV energy band, and 7 sources in the 100-300 keV
energy band. Seventeen sources were not present in the original GBM-EOT catalog
and have now been added. We also present the first joined averaged spectra for
four persistent sources detected by GBM using EOT and by the Large Area
Telescope (LAT) on Fermi: NGC 1275, 3C 273, Cen A, and the Crab
- …
