42 research outputs found
Metabolic Versatility and Antibacterial Metabolite Biosynthesis Are Distinguishing Genomic Features of the Fire Blight Antagonist Pantoea vagans C9-1
Smits THM, Rezzonico F, Kamber T, et al. Metabolic Versatility and Antibacterial Metabolite Biosynthesis Are Distinguishing Genomic Features of the Fire Blight Antagonist Pantoea vagans C9-1. PLoS ONE. 2011;6(7): e22247.Background: Pantoea vagans is a commercialized biological control agent used against the pome fruit bacterial disease fire blight, caused by Erwinia amylovora. Compared to other biocontrol agents, relatively little is currently known regarding Pantoea genetics. Better understanding of antagonist mechanisms of action and ecological fitness is critical to improving efficacy. Principal Findings: Genome analysis indicated two major factors contribute to biocontrol activity: competition for limiting substrates and antibacterial metabolite production. Pathways for utilization of a broad diversity of sugars and acquisition of iron were identified. Metabolism of sorbitol by P. vagans C9-1 may be a major metabolic feature in biocontrol of fire blight. Biosynthetic genes for the antibacterial peptide pantocin A were found on a chromosomal 28-kb genomic island, and for dapdiamide E on the plasmid pPag2. There was no evidence of potential virulence factors that could enable an animal or phytopathogenic lifestyle and no indication of any genetic-based biosafety risk in the antagonist. Conclusions: Identifying key determinants contributing to disease suppression allows the development of procedures to follow their expression in planta and the genome sequence contributes to rationale risk assessment regarding the use of the biocontrol strain in agricultural systems
Endothelial Differentiation of Human Stem Cells Seeded onto Electrospun Polyhydroxybutyrate/Polyhydroxybutyrate-Co-Hydroxyvalerate Fiber Mesh
Tissue engineering is based on the association of cultured cells with structural matrices and the incorporation of signaling molecules for inducing tissue regeneration. Despite its enormous potential, tissue engineering faces a major challenge concerning the maintenance of cell viability after the implantation of the constructs. The lack of a functional vasculature within the implant compromises the delivery of nutrients to and removal of metabolites from the cells, which can lead to implant failure. In this sense, our investigation aims to develop a new strategy for enhancing vascularization in tissue engineering constructs. This study's aim was to establish a culture of human adipose tissue-derived stem cells (hASCs) to evaluate the biocompatibility of electrospun fiber mesh made of polyhydroxybutyrate (PHB) and its copolymer poly-3-hydroxybutyrate-co-3-hydroxyvalerate (PHB-HV) and to promote the differentiation of hASCs into the endothelial lineage. Fiber mesh was produced by blending 30% PHB with 70% PHB-HV and its physical characterization was conducted using scanning electron microscopy analysis (SEM). Using electrospinning, fiber mesh was obtained with diameters ranging 300 nm to 1.3 µm. To assess the biological performance, hASCs were extracted, cultured, characterized by flow cytometry, expanded and seeded onto electrospun PHB/PHB-HV fiber mesh. Various aspects of the cells were analyzed in vitro using SEM, MTT assay and Calcein-AM staining. The in vitro evaluation demonstrated good adhesion and a normal morphology of the hASCs. After 7, 14 and 21 days of seeding hASCs onto electrospun PHB/PHB-HV fiber mesh, the cells remained viable and proliferative. Moreover, when cultured with endothelial differentiation medium (i.e., medium containing VEGF and bFGF), the hASCs expressed endothelial markers such as VE-Cadherin and the vWF factor. Therefore, the electrospun PHB/PHB-HV fiber mesh appears to be a suitable material that can be used in combination with endothelial-differentiated cells to improve vascularization in engineered bone tissues
Sequential Expression of Bacterial Virulence and Plant Defense Genes During Infection of Tomato with Clavibacter michiganensis subsp michiganensis
Chalupowicz L, Cohen-Kandli M, Dror O, et al. Sequential Expression of Bacterial Virulence and Plant Defense Genes During Infection of Tomato with Clavibacter michiganensis subsp michiganensis. PHYTOPATHOLOGY. 2010;100(3):252-261.The molecular interactions between Clavibacter michiganensis subsp. michiganensis and tomato plant were studied by following the expression of bacterial virulence and host-defense genes during early stages of infection. The C. michiganensis subsp. michiganensis genes included the plasmid-borne cellulase (celA) and the serine protease (pat-1), and the serine proteases chpC and ppaA, residing on the chp/tomA pathogenicity island (PAI). Gene expression was measured following tomato inoculation with Cmm382 (wild type), Cmm100 (lacking the plasmids pCM1 and pCM2), and Cmm27 (lacking the PAI). Transcriptional analysis revealed that celA and pat-1 were significantly induced in Cmm382 at initial 12 to 72 h, whereas chpC and ppaA were highly expressed only 96 h after inoculation. Interdependence between the expression of chromosomal and of plasmid-located genes was revealed: expression of celA and pat-1 was substantially reduced in the absence of the chp/tomA PAI, whereas chpC and ppaA expressions were reduced in the absence of the virulence plasmids. Transcription of chromosomal genes involved in cell wall degradation (i.e., pelA1, celB, xysA, and xysB), was also induced at early stages of infection. Expression of the host-defense genes, chitinase class II and pathogenesis-related protein-5 isoform was induced in the absence of the PAI at early stages of infection, suggesting that PAI-located genes are involved in suppression of tomato basal defenses
Characterization of Dickeya strains isolated from potato grown under hot-climate conditions
Dickeya strains isolated in Israel in 2006–2010 were characterized by dnaX sequence analysis, pulsed-field gel electrophoresis (PFGE), biochemical assays and pectolytic activity, and found to be homogeneous: most of them could be classified as ‘Dickeya solani’. Of the 34 strains isolated from imported seed tubers or potato plants grown from imported seed, 32 were typed as ‘D. solani’ and only two were characterized as Dickeya dianthicola. Biovar typing indicated that all ‘D. solani’ strains were biovar 3. ‘Dickeya solani’ strains were most closely related to Dickeya dadantii subsp. dieffenbachiae according to PFGE and dnaX analyses and both species exhibited high pectolytic activity. Expression levels of two putative virulence genes, pelL (encoding a pectic enzyme) and dspE (encoding a type III effector) were significantly induced in ‘D. solani’ strains isolated from potato plants or tubers grown in hot climates such as the Negev region in Israel, compared to those isolated from seed tubers imported from the Netherlands, France or Germany. Results of this study support the hypothesis that ‘D. solani’ strains isolated in Israel are also clonal; however, they appear to be more virulent than strains isolated in Europ
Colonization and Movement of GFP-Labeled Clavibacter michiganensis subsp michiganensis During Tomato Infection
Chalupowicz L, Zellermann E-M, Flügel M, et al. Colonization and Movement of GFP-Labeled Clavibacter michiganensis subsp michiganensis During Tomato Infection. Phytopathology. 2012;102(1):23-31.Chalupowicz, L., Zellermann, E.-M., Fluegel, M., Dror, O., Eichenlaub, R., Gartemann, K.-H., Savidor, A., Sessa, G., Iraki, N., Barash, I., and Manulis-Sasson, S. 2012. Colonization and movement of GFP-labeled Clavibacter michiganensis subsp. michiganensis during tomato infection. Phytopathology 102:23-31. The vascular pathogen Clavibacter michiganensis subsp. michiganensis is responsible for bacterial wilt and canker of tomato. Pathogenicity of this bacterium is dependent on plasmid-borne virulence factors and serine proteases located on the chromosomal chp/tomA pathogenicity island (PAI). In this study, colonization patterns and movement of C.;michiganensis subsp. michiganensis during tomato infection was examined using a green fluorescent protein (GFP)-labeled strain. A plasmid expressing GFP in C. michiganensis subsp. michiganensis was constructed and found to be stable in planta for at least 1 month. Confocal laser-scanning microscopy (CLSM) of inoculated stems showed that the pathogen extensively colonizes the lumen of xylem vessels and preferentially attaches to spiral secondary wall thickening of the protoxylem. Acropetal movement of the wild-type strain C. michiganensis subsp. michiganensis NCPPB382 (Cmm382) in tomato resulted in an extensive systemic colonization of the whole plant reaching the apical region after 15 days, whereas Cmm100 (lacking the plasmids pCM1 and pCM2) or Cmm27 (lacking the chp/tomA PAI) remained confined to the area surrounding of the inoculation site. Cmm382 formed biofilm-like structures composed of large bacterial aggregates on the interior of xylem walls as observed by CLSM and scanning electron microscopy. These findings suggest that virulence factors located on the chp/tomA PAI or the plasmids are required for effective movement of the pathogen in tomato and for the formation of cellular aggregates
The Clavibacter michiganensis subsp michiganensis-Tomato Interactome Reveals the Perception of Pathogen by the Host and Suggests Mechanisms of Infection
Savidor A, Teper D, Gartemann K-H, et al. The Clavibacter michiganensis subsp michiganensis-Tomato Interactome Reveals the Perception of Pathogen by the Host and Suggests Mechanisms of Infection. Journal of Proteome Research. 2012;11(2):736-750.The Gram-positive bacterium Clavibacter michiganensis subsp. michiganensis (Cmm) causes wilt and canker disease of tomato (Solanum lycopersicum). Mechanisms of Cmm pathogenicity and tomato response to Cmm infection are not well understood. To explore the interaction between Cmm and tomato, multidimensional protein identification technology (MudPIT) and tandem mass spectrometry were used to analyze in vitro and in planta generated samples. The results show that during infection Cmm senses the plant environment, transmits signals, induces, and then secretes multiple hydrolytic enzymes, including serine proteases of the Pat-1, Ppa, and Sbt familes, the CelA, XysA, and NagA glycosyl hydrolases, and other cell wall-degrading enzymes. Tomato induction of pathogenesis-related (PR) proteins, LOX1, and other defense-related proteins during infection indicates that the plant senses the invading bacterium and mounts a basal defense response, although partial with some suppressed components including class III peroxidases and a secreted serine peptidase. The tomato ethylene-synthesizing enzyme ACC-oxidase was induced during infection with the wild-type Cmm but not during infection with an endophytic Cmm strain, identifying Cmm-triggered host synthesis of ethylene as an important factor in disease symptom development. The proteomic data were also used to improve Cmm genome annotation, and thousands of Cmm gene models were confirmed or expanded