179 research outputs found
Final state interaction effects in semi-inclusive DIS off the deuteron
The effects of the final state interaction (FSI) in semi-exclusive
deep-inelastic scattering of electrons off the deuteron are analyzed paying
particular attention to two extreme kinematical regions: i) the one where FSI
effects are minimized, so that the quark distribution of bound nucleons could
be investigated, and ii) the one where the re-interaction of the produced
hadrons with the spectator nucleon is maximized, which would allow one to study
the mechanism of hadronization of highly virtual quark. It is demonstrated that
when the recoiling spectator nucleon is detected in the backward hemisphere
with low momentum the effects from FSI are negligible, whereas at large
transverse momenta of the spectator the FSI effects are rather large. Numerical
estimates show that the FSI corrections are sensitive to the theoretical models
of the hadronization mechanism.Comment: 18 pages 6 figures A draft of the paper was erroneously sent instead
of the paper itsel
Source Vacuum Fluctuations of Black Hole Radiance
The emergence of Hawking radiation from vacuum fluctuations is analyzed in
conventional field theories and their energy content is defined through the
Aharonov weak value concept. These fluctuations travel in flat space-time and
carry transplanckian energies sharply localized on cisplanckian distances. We
argue that these features cannot accommodate gravitational nonlinearities. We
suggest that the very emission of Hawking photons from tamed vacuum
fluctuations requires the existence of an exploding set of massive fields.
These considerations corroborate some conjectures of Susskind and may prove
relevant for the back-reaction problem and for the unitarity issue.Comment: 33 pages, ULB-TH 03/94, 5 figures not included, available on request
from F.E. (problem with truncation of long lines
Renormalization Group Equation and QCD Coupling Constant in the Presence of SU(3) Chromo-Electric Field
We solve renormalization group equation in QCD in the presence of SU(3)
constant chromo-electric field E^a with arbitrary color index a=1,2,...8 and
find that the QCD coupling constant \alpha_s depends on two independent
casimir/gauge invariants C_1=[E^aE^a] and C_2=[d_{abc}E^aE^bE^c]^2 instead of
one gauge invariant C_1=[E^aE^a]. The \beta function is derived from the
one-loop effective action. This coupling constant may be useful to study hadron
formation from color flux tubes/strings at high energy colliders and to study
quark-gluon plasma formation at RHIC and LHC.Comment: 13 pages latex, 4 eps figs, Eur. Phys. J.
A note on the black hole information paradox in de Sitter spacetimes
The possibility of stable or quasi--stable Planck mass black hole remnants as
solution to the black hole information paradox is commonly believed
phenomenologically unacceptable: since we have to expect a black hole remnant
for every possible initial state, the number of remnants should be infinite.
This would lead to remnant pair production in any physical process with a total
available energy roughly exceeding the Planck mass, against trivial evidences.
In this note I point out that the number of remnants in our Universe could be
finite, at least if the value of the cosmological constant is positive, as
present observational data could indicate. Nevertheless, it is not clear if a
huge but finite number of states is phenomenologically allowed.Comment: 4 pages, 1 figure. v3: refereed versio
Collapse of Flux Tubes
The dynamics of an idealized, infinite, MIT-type flux tube is followed in
time as the interior evolves from a pure gluon field to a
plasma. We work in color U(1). pair formation is evaluated
according to the Schwinger mechanism using the results of Brink and Pavel. The
motion of the quarks toward the tube endcaps is calculated by a Boltzmann
equation including collisions. The tube undergoes damped radial oscillations
until the electric field settles down to zero. The electric field stabilizes
the tube against pinch instabilities; when the field vanishes, the tube
disintegrates into mesons. There is only one free parameter in the problem,
namely the initial flux tube radius, to which the results are very sensitive.
Among various quantities calculated is the mean energy of the emitted pions.Comment: 16 pages plus 12 figures. RevTex3. DOE/ER/40427-160N9
Cosmological and Black Hole Horizon Fluctuations
The quantum fluctuations of horizons in Robertson-Walker universes and in the
Schwarzschild spacetime are discussed. The source of the metric fluctuations is
taken to be quantum linear perturbations of the gravitational field. Lightcone
fluctuations arise when the retarded Green's function for a massless field is
averaged over these metric fluctuations. This averaging replaces the
delta-function on the classical lightcone with a Gaussian function, the width
of which is a measure of the scale of the lightcone fluctuations. Horizon
fluctuations are taken to be measured in the frame of a geodesic observer
falling through the horizon. In the case of an expanding universe, this is a
comoving observer either entering or leaving the horizon of another observer.
In the black hole case, we take this observer to be one who falls freely from
rest at infinity. We find that cosmological horizon fluctuations are typically
characterized by the Planck length. However, black hole horizon fluctuations in
this model are much smaller than Planck dimensions for black holes whose mass
exceeds the Planck mass. Furthermore, we find black hole horizon fluctuations
which are sufficiently small as not to invalidate the semiclassical derivation
of the Hawking process.Comment: 22 pages, Latex, 4 figures, uses eps
Schwinger Mechanism for Gluon Pair Production in the Presence of Arbitrary Time Dependent Chromo-Electric Field
We study Schwinger mechanism for gluon pair production in the presence of
arbitrary time-dependent chromo-electric background field with
arbitrary color index =1,2,...8 in SU(3) by directly evaluating the path
integral. We obtain an exact expression for the probability of non-perturbative
gluon pair production per unit time per unit volume and per unit transverse
momentum from arbitrary . We show that the
tadpole (or single gluon) effective action does not contribute to the
non-perturbative gluon pair production rate . We find
that the exact result for non-perturbative gluon pair production is independent
of all the time derivatives where
and has the same functional dependence on two casimir invariants
and as the constant
chromo-electric field result with the replacement: . This
result may be relevant to study the production of a non-perturbative
quark-gluon plasma at RHIC and LHC.Comment: 13 pages latex, Published in European Physical Journal
Heat conduction in the disordered harmonic chain revisited
A general formulation is developed to study heat conduction in disordered
harmonic chains with arbitrary heat baths that satisfy the
fluctuation-dissipation theorem. A simple formal expression for the heat
current J is obtained, from which its asymptotic system-size (N) dependence is
extracted. It is shown that the ``thermal conductivity'' depends not just on
the system itself but also on the spectral properties of the fluctuation and
noise used to model the heat baths. As special cases of our heat baths we
recover earlier results which reported that for fixed boundaries , while for free boundaries . For other choices we
find that one can get other power laws including the ``Fourier behaviour'' .Comment: 5 pages, 3 figures, accepted for publication in Phys. Rev. Let
Back-Reaction In Lightcone QED
We consider the back-reaction of quantum electrodynamics upon an electric
field E(x_+) = - A'_-(x_+) which is parallel to x^3 and depends only on the
lightcone coordinate x_+ = (x^0 + x^3)/\sqrt{2}. Novel features are that the
mode functions have simple expressions for arbitrary A_-(x_+), and that one
cannot ignore the usual lightcone ambiguity at zero + momentum. Each mode of
definite canonical momenta k_+ experiences pair creation at the instant when
its kinetic momentum p_+=k_+ - e A_-(x_+) vanishes, at which point operators
from the surface at x_- =-\infty play a crucial role. Our formalism permits a
more explicit and complete derivation of the rate of particle production than
is usually given. We show that the system can be understood as the infinite
boost limit of the analogous problem of an electric field which is homogeneous
on surfaces of constant x^0.Comment: 37 pages, 2 figures, LaTeX 2 epsilo
Exact solution (by algebraic methods) of the lattice Schwinger model in the strong-coupling regime
Using the monomer--dimer representation of the lattice Schwinger model, with
Wilson fermions in the strong--coupling regime (), we
evaluate its partition function, , exactly on finite lattices. By studying
the zeroes of in the complex plane for a large number of
small lattices, we find the zeroes closest to the real axis for infinite
stripes in temporal direction and spatial extent and 3. We find evidence
for the existence of a critical value for the hopping parameter in the
thermodynamic limit on the real axis at about . By looking at the behaviour of quantities, such as the chiral
condensate, the chiral susceptibility and the third derivative of with
respect to , close to the critical point , we find some indications
for a continuous phase transition.Comment: 22 pages (6 figures
- …
