169 research outputs found

    Expressing coherence of musical perception in formal logic

    Get PDF
    Formal logic can be used for expressing certain aspects of musical coherence. In this paper, a framework is developed which aims at linking. expressions in the formal language to an underlying interpretation in terms of musical images and image transformations. Such an interpretation characterizes truth within a framework of spatio-temporal representations and perception-based musical information processing. The framework provides a way for defining a semantics for the coherence of musical perception

    Interpersonal sensorimotor communication shapes intrapersonal coordination in a musical ensemble

    Get PDF
    Social behaviors rely on the coordination of multiple effectors within one’s own body as well as between the interacting bodies. However, little is known about how coupling at the interpersonal level impacts coordination among body parts at the intrapersonal level, especially in ecological, complex, situations. Here, we perturbed interpersonal sensorimotor communication in violin players of an orchestra and investigated how this impacted musicians’ intrapersonal movements coordination. More precisely, first section violinists were asked to turn their back to the conductor and to face the second section of violinists, who still faced the conductor. Motion capture of head and bow kinematics showed that altering the usual interpersonal coupling scheme increased intrapersonal coordination. Our perturbation also induced smaller yet more complex head movements, which spanned multiple, faster timescales that closely matched the metrical levels of the musical score. Importantly, perturbation differentially increased intrapersonal coordination across these timescales. We interpret this behavioral shift as a sensorimotor strategy that exploits periodical movements to effectively tune sensory processing in time and allows coping with the disruption in the interpersonal coupling scheme. As such, head movements, which are usually deemed to fulfill communicative functions, may possibly be adapted to help regulate own performance in time

    Bacteria Hunt: A multimodal, multiparadigm BCI game

    Get PDF
    Brain-Computer Interfaces (BCIs) allow users to control applications by brain activity. Among their possible applications for non-disabled people, games are promising candidates. BCIs can enrich game play by the mental and affective state information they contain. During the eNTERFACE’09 workshop we developed the Bacteria Hunt game which can be played by keyboard and BCI, using SSVEP and relative alpha power. We conducted experiments in order to investigate what difference positive vs. negative neurofeedback would have on subjects’ relaxation states and how well the different BCI paradigms can be used together. We observed no significant difference in mean alpha band power, thus relaxation, and in user experience between the games applying positive and negative feedback. We also found that alpha power before SSVEP stimulation was significantly higher than alpha power during SSVEP stimulation indicating that there is some interference between the two BCI paradigms

    The change matters! Measuring the effect of changing the leader in joint music performances

    Get PDF
    In a joint action, a group of individuals coordinate their movements to reach a shared goal. When a change - i.e., an event that affects group functioning - occurs, the group adopts strategies to face it. This paper investigates how a change involving a strategic core role in a group affects interpersonal coordination and ultimately group effectiveness in performing a joint action. Following the entrainment theory, interpersonal coordination is addressed in terms of the rhythmic cycles of the individuals and of the group and their adjustment. Music is used as an ideal ecological scenario for investigation. Results show that whereas the change of conductor had a limited significant effect on entrainment, a significant effect was found when entrainment is used as a predictor of the external ratings. Both the obtained results and the techniques developed for measuring entrainment may open novel research directions in the area of automated analysis of group behavior, and particularly of emotion in groups

    Collaborative creativity: The Music Room

    Get PDF
    In this paper, we reflect on our experience of designing, developing and evaluating interactive spaces for collaborative creativity. In particular, we are interested in designing spaces which allow everybody to compose and play original music. The Music Room is an interactive installation where couples can compose original music by moving in the space. Following the metaphor of love, the music is automatically generated and modulated in terms of pleasantness and intensity, according to the proxemics cues extracted from the visual tracking algorithm. The Music Room was exhibited during the EU Researchers' Night in Trento, Italy

    Fast and Continuous Foothold Adaptation for Dynamic Locomotion Through CNNs

    Get PDF
    Legged robots can outperform wheeled machines for most navigation tasks across unknown and rough terrains. For such tasks, visual feedback is a fundamental asset to provide robots with terrain awareness. However, robust dynamic locomotion on difficult terrains with real-time performance guarantees remains a challenge. We present here a real-time, dynamic foothold adaptation strategy based on visual feedback. Our method adjusts the landing position of the feet in a fully reactive manner, using only on-board computers and sensors. The correction is computed and executed continuously along the swing phase trajectory of each leg. To efficiently adapt the landing position, we implement a self-supervised foothold classifier based on a convolutional neural network. Our method results in an up to 200 times faster computation with respect to the full-blown heuristics. Our goal is to react to visual stimuli from the environment, bridging the gap between blind reactive locomotion and purely vision-based planning strategies. We assess the performance of our method on the dynamic quadruped robot HyQ, executing static and dynamic gaits (at speeds up to 0.5 m/s) in both simulated and real scenarios; the benefit of safe foothold adaptation is clearly demonstrated by the overall robot behavior

    Robo1 regulates the development of major axon tracts and interneuron migration in the forebrain

    Get PDF
    The Slit genes encode secreted ligands that regulate axon branching, commissural axon pathfinding and neuronal migration. The principal identified receptor for Slit is Robo ( Roundabout in Drosophila). To investigate Slit signalling in forebrain development, we generated Robo1 knockout mice by targeted deletion of exon 5 of the Robo1 gene. Homozygote knockout mice died at birth, but prenatally displayed major defects in axon pathfinding and cortical interneuron migration. Axon pathfinding defects included dysgenesis of the corpus callosum and hippocampal commissure, and abnormalities in corticothalamic and thalamocortical targeting. Slit2 and Slit1/2 double mutants display malformations in callosal development, and in corticothalamic and thalamocortical targeting, as well as optic tract defects. In these animals, corticothalamic axons form large fasciculated bundles that aberrantly cross the midline at the level of the hippocampal and anterior commissures, and more caudally at the medial preoptic area. Such phenotypes of corticothalamic targeting were not observed in Robo1 knockout mice but, instead, both corticothalamic and thalamocortical axons aberrantly arrived at their respective targets at least 1 day earlier than controls. By contrast, in Slit mutants, fewer thalamic axons actually arrive in the cortex during development. Finally, significantly more interneurons ( up to twice as many at E12.5 and E15.5) migrated into the cortex of Robo1 knockout mice, particularly in both rostral and parietal regions, but not caudal cortex. These results indicate that Robo1 mutants have distinct phenotypes, some of which are different from those described in Slit mutants, suggesting that additional ligands, receptors or receptor partners are likely to be involved in Slit/Robo signalling

    DOORS syndrome and a recurrent truncating ATP6V1B2 variant

    Get PDF
    PURPOSE: Biallelic variants in TBC1D24, which encodes a protein that regulates vesicular transport, are frequently identified in patients with DOORS (deafness, onychodystrophy, osteodystrophy, intellectual disability [previously referred to as mental retardation], and seizures) syndrome. The aim of the study was to identify a genetic cause in families with DOORS syndrome and without a TBC1D24 variant. METHODS: Exome or Sanger sequencing was performed in individuals with a clinical diagnosis of DOORS syndrome without TBC1D24 variants. RESULTS: We identified the same truncating variant in ATP6V1B2 (NM_001693.4:c.1516C>T; p.Arg506*) in nine individuals from eight unrelated families with DOORS syndrome. This variant was already reported in individuals with dominant deafness onychodystrophy (DDOD) syndrome. Deafness was present in all individuals, along with onychodystrophy and abnormal fingers and/or toes. All families but one had developmental delay or intellectual disability and five individuals had epilepsy. We also describe two additional families with DDOD syndrome in whom the same variant was found. CONCLUSION: We expand the phenotype associated with ATP6V1B2 and propose another causal gene for DOORS syndrome. This finding suggests that DDOD and DOORS syndromes might lie on a spectrum of clinically and molecularly related conditions

    Borgese, Salvemini, La Piana e "le systeme de l'exil"

    Get PDF
    L'articolo ricostruisce la trama dei rapporti intellettuali e politici tra tre grandi esuli: Borgede, Salvemini e La Pian
    corecore