57 research outputs found

    Stress induced polarization of immune-neuroendocrine phenotypes in Gallus gallus

    Get PDF
    Immune-neuroendocrine phenotypes (INPs) stand for population subgroups differing in immune-neuroendocrine interactions. While mammalian INPs have been characterized thoroughly in rats and humans, avian INPs were only recently described in Coturnix coturnix (quail). To assess the scope of this biological phenomenon, herein we characterized INPs in Gallus gallus (a domestic hen strain submitted to a very long history of strong selective breeding pressure) and evaluated whether a social chronic stress challenge modulates the individuals’ interplay affecting the INP subsets and distribution. Evaluating plasmatic basal corticosterone, interferon-γ and interleukin-4 concentrations, innate/acquired leukocyte ratio, PHA-P skin-swelling and induced antibody responses, two opposite INP profiles were found: LEWIS-like (15% of the population) and FISCHER-like (16%) hens. After chronic stress, an increment of about 12% in each polarized INP frequency was found at expenses of a reduction in the number of birds with intermediate responses. Results show that polarized INPs are also a phenomenon occurring in hens. The observed inter-individual variation suggest that, even after a considerable selection process, the population is still well prepared to deal with a variety of immune-neuroendocrine challenges. Stress promoted disruptive effects, leading to a more balanced INPs distribution, which represents a new substrate for challenging situations.Fil: Nazar, Franco Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; ArgentinaFil: Estevez, Inma. Centro de Investigación. Neiker - Tecnalia; EspañaFil: Correa, Silvia Graciela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Marin, Raul Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones Biológicas y Tecnológicas. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Instituto de Investigaciones Biológicas y Tecnológicas; Argentin

    Sex Differences in Social Interaction Behavior Following Social Defeat Stress in the Monogamous California Mouse (Peromyscus californicus)

    Get PDF
    Stressful life experiences are known to be a precipitating factor for many mental disorders. The social defeat model induces behavioral responses in rodents (e.g. reduced social interaction) that are similar to behavioral patterns associated with mood disorders. The model has contributed to the discovery of novel mechanisms regulating behavioral responses to stress, but its utility has been largely limited to males. This is disadvantageous because most mood disorders have a higher incidence in women versus men. Male and female California mice (Peromyscus californicus) aggressively defend territories, which allowed us to observe the effects of social defeat in both sexes. In two experiments, mice were exposed to three social defeat or control episodes. Mice were then behaviorally phenotyped, and indirect markers of brain activity and corticosterone responses to a novel social stimulus were assessed. Sex differences in behavioral responses to social stress were long lasting (4 wks). Social defeat reduced social interaction responses in females but not males. In females, social defeat induced an increase in the number of phosphorylated CREB positive cells in the nucleus accumbens shell after exposure to a novel social stimulus. This effect of defeat was not observed in males. The effects of defeat in females were limited to social contexts, as there were no differences in exploratory behavior in the open field or light-dark box test. These data suggest that California mice could be a useful model for studying sex differences in behavioral responses to stress, particularly in neurobiological mechanisms that are involved with the regulation of social behavior

    Peripuberty stress leads to abnormal aggression, altered amygdala and orbitofrontal reactivity and increased prefrontal MAOA gene expression.

    Get PDF
    Although adverse early life experiences have been found to increase lifetime risk to develop violent behaviors, the neurobiological mechanisms underlying these long-term effects remain unclear. We present a novel animal model for pathological aggression induced by peripubertal exposure to stress with face, construct and predictive validity. We show that male rats submitted to fear-induction experiences during the peripubertal period exhibit high and sustained rates of increased aggression at adulthood, even against unthreatening individuals, and increased testosterone/corticosterone ratio. They also exhibit hyperactivity in the amygdala under both basal conditions (evaluated by 2-deoxy-glucose autoradiography) and after a resident-intruder (RI) test (evaluated by c-Fos immunohistochemistry), and hypoactivation of the medial orbitofrontal (MO) cortex after the social challenge. Alterations in the connectivity between the orbitofrontal cortex and the amygdala were linked to the aggressive phenotype. Increased and sustained expression levels of the monoamine oxidase A (MAOA) gene were found in the prefrontal cortex but not in the amygdala of peripubertally stressed animals. They were accompanied by increased activatory acetylation of histone H3, but not H4, at the promoter of the MAOA gene. Treatment with an MAOA inhibitor during adulthood reversed the peripuberty stress-induced antisocial behaviors. Beyond the characterization and validation of the model, we present novel data highlighting changes in the serotonergic system in the prefrontal cortex-and pointing at epigenetic control of the MAOA gene-in the establishment of the link between peripubertal stress and later pathological aggression. Our data emphasize the impact of biological factors triggered by peripubertal adverse experiences on the emergence of violent behaviors

    Comment les volailles perçoivent-elles leur environnement ?

    No full text
    Cognitive abilities bring together all of the mental processes such as attention, memory, and reasoning skills that allow an animal to understand and to adapt to its environment. They are the basis of many behaviours. In this review, in a synthetic way, we will first make an inventory of current knowledge on the cognitive capacities of domestic birds, such as hens or chickens. We will show that these birds have a diverse sensory universe, are capable of rich social interactions and of learning, among other capacities. Even if there is still research to be carried out, these birds probably have a repertoire of cognitive abilities much more extensive than what is though. In a second part, we will illustrate that this knowledge brings a new vision of our understanding of certain behaviours observed in farming systems, such as range exploration of free-range chickens, or injurious pecking in laying hens. This knowledge and this research theme, which are currently developing more and more at the international level, will contribute to a better understanding of the biology of these animals and could, in the long term, provide original avenues for promoting the adaptation of these birds to their rearing system and their welfare

    A cognitive approach to better understand foraging strategies of the adult domestic hen

    No full text
    Abstract Foraging is known to be one of the most important activities in the behavioral budget of chickens. However, how these animals adapt different foraging strategies to diverse environmental variations is currently poorly understood. To gain further insight into this matter, in the present study, hens were submitted to the sloped-tubes task. In this task, the experimenter can manipulate the information that enables the hens to find a food reward (visible or not), placed in one of two hollow tubes. First, 12 hens were tested under free-choice conditions (no penalty for exhaustive searching in both tubes). Under these conditions, the hens adopted a non-random, side-biased strategy when the food location was not directly visible. Then, we divided the hens in two cohorts of equal size to study deeper the hens’ foraging strategy when faced (1) with a different container, or (2) with a restrictive environmental constraint under forced-choice conditions (no food reward if the unbaited tube is visited first). This latter constraint increased the risk of the hen not receiving food. A change in the containers didn’t modify the search behavior of the hens. However, in forced-choice conditions when the location of the food was not directly visible, four out of six hens learned to choose by exclusion. We conclude that hens can selectively adapt their foraging strategy to the point of adopting an exclusion performance, depending on available information and environmental constraints (high or low risk)

    Structuring and enriching the rearing environment in conventional broiler chicken production: effects on behavioral indicators, emotional states, and cecal microbiota composition

    No full text
    Providing a variety of elements in the rearing environment may offer a promising way to transition conventional broiler production towards more animal-friendly production systems. This study aimed to investigate the effect of a complex and structured rearing environment on broiler welfare by comparing three complex enriched rooms (E) with visual cues and multiple elements for resting or exploration, to three control rooms (C) with minimal enrichments. Each room housed 2450 Redbro chickens and received natural light. We evaluated how the rearing environment influenced chicken behavior, emotional state, and the cecal microbiota composition at the end of the rearing period. E chickens stood, foraged and moved more often than C chickens (e.g. 38% vs. 19% walking; 4% vs. 1% foraging, P < 0.001), while dustbathing frequency did not differ. In group-based tests, E chickens were more likely to approach and peck at a novel object or human (P < 0.05), suggesting reduced fearfulness and increased curiosity. In the detour test, E chickens exited the U-shaped area more frequently (P < 0.001) and vocalized less (P = 0.004), indicating greater exploratory motivation and possibly better spatial cognition. Microbiota analysis revealed no differences in alpha diversity, but beta diversity differed significantly between treatments (P < 0.001). E chickens had higher relative abundances of Bacteroidota, while C chickens had more Bacillota. Overall, the complex environment promoted natural behaviors, reduced emotional reactivity, and altered gut microbiota composition, supporting its potential to improve broiler welfare under semi-commercial conditions
    corecore