2,155 research outputs found

    Auxetic two-dimensional lattice with Poisson's Ratio arbitrarily close to -1

    Full text link
    In this paper we propose a new lattice structure having macroscopic Poisson's ratio arbitrarily close to the stability limit -1. We tested experimentally the effective Poisson's ratio of the micro-structured medium; the uniaxial test has been performed on a thermoplastic lattice produced with a 3d printing technology. A theoretical analysis of the effective properties has been performed and the expression of the macroscopic constitutive properties is given in full analytical form as a function of the constitutive properties of the elements of the lattice and on the geometry of the microstructure. The analysis has been performed on three micro-geometry leading to an isotropic behaviour for the cases of three-fold and six-fold symmetry and to a cubic behaviour for the case of four-fold symmetry.Comment: 26 pages, 12 figures (26 subfigures

    Effective properties of a new auxetic triangular lattice: an analytical approach

    Get PDF
    In this article we propose a new auxetic periodic lattice with negative Poisson's ratio which tends to the limit ?=-1 under particular conditions. We have studied its generation and kinematic, and we give a full description of the mechanical properties of this innovative model. Calibrating the geometrical configuration of the lattice and the mechanical properties of the constituent material we are able to have a Poisson's ratio which is arbitrarily close to -1

    A novel Smart Home Energy Management system: Cooperative neighbourhood and adaptive renewable energy usage

    Get PDF
    Energy usage optimization in Smart Homes is a critical problem: over 30% of the energy consumption of the world resides in the residential sector. Usage awareness and manual appliance control alone are able to reduce consumption by 15%. This result could be improved if appliance control is automatic, especially if renewable sources are present locally. In this paper, a Smart Home Energy Management system that aims at automatically controlling appliances in groups of smart homes belonging to the same neighborhood is proposed. Not only is electric power distribution considered, but also renewable energy sources such as wind micro-turbines and solar panels. The proposed strategy relies on two algorithms. The Cost Saving Task Scheduling algorithm is aimed at scheduling high-power controllable loads during off-peak hours, taking into account the expected usage of the non-controllable appliances such as fridge, oven, etc. This algorithm is run whenever a new need of energy from a controllable load is detected. The Renewable Source Power Allocation algorithm re-allocated the starting time of controllable loads whenever surplus of renewable source power is detected making use of a distributed max-consensus negotiation. Performance evaluation of the algorithms tested proves that the proposed approach provides an energy cost saving that goes between 35% and 65% with reference to the case where no automatic control is used
    • …
    corecore